Organizers

UAB
Universitat Autònoma de Barcelona

Acknowledgement

The organizers would like to thank exhibitors and sponsors

a.e.r.o.medi

Plair
Identify invisible Threats

HANZONI

LAIMPRENTA
WWW.LAIMPRENTACG.COM
Mediterranean Palynology Symposium 2017

Barcelona, 4-6 September 2017

Asociación de Palinólogos de Lengua Española (APLE)
Gruppo di Palinologia e Paleobotanica della Società Botanica Italiana (GPPSBI)
Association des Palynologues de Langue Française (APLF)

Abstracts book

Edited by Concepción De Linares and Jordina Belmonte
Organizing Committee
Jordina Belmonte (President); Universitat Autònoma de Barcelona, Spain
Concepción De Linares (Secretary); Universitat Autònoma de Barcelona, Spain
Alessia Masi; University of Rome “La Sapienza”, Italy
Anna Maria Mercuri; University of Modena e Reggio Emilia, Italy
Ramon Pérez-Obiol; Universitat Autònoma de Barcelona, Spain
Laura Sadori; University of Rome “La Sapienza”, Italy
María Fernanda Sánchez-Goñi; EPHE, Research University- University of Bordeaux, France
Pilar S. Testillano; Biological Research Centre (CIB), C.S.I.C., Spain
Maria del Mar Trigo Pérez; University of Málaga, Spain

Scientific Committee
Marta Alarcón; Universitat Politècnica de Catalunya, Spain
Juan de Dios Alché; Spanish Council for Scientific Research (CSIC), Spain
Marie José Battesti, Université de Corse Pascal Paoli, France
Jordina Belmonte; Universitat Autònoma de Barcelona, Spain
Rachid Cheddadi; University of Montpellier, France
Concepción De Linares; Universitat Autònoma de Barcelona, Spain
Stefano Del Duca; University of Bologna, Italy
Giuseppe Frenguelli; Università di Perugia, Italy
Carmen Galán; University of Córdoba, Spain
Katerina Kouli; National and Kapodistrian University of Athens, Greece
Anna Maria Mercuri; University of Modena e Reggio Emilia, Italy
Ramon Pérez-Obiol; Universitat Autònoma de Barcelona, Spain
Santiago Riera Mora; University of Barcelona, Spain
Ana Teresa Romero García; University of Granada, Spain
Laura Sadori; University of Rome “La Sapienza”, Italy
María Fernanda Sánchez-Goñi; EPHE, Research University- University of Bordeaux, France
José Sánchez Sánchez; Hispanic-Luso Institute for Agricultural Research (CIALE); University of Salamanca, Spain
Pilar S. Testillano; Biological Research Centre (CIB), C.S.I.C., Spain
Michel Thibaudon; EAS Past President, RNSA, France
Maria del Mar Trigo Pérez; University of Málaga, Spain
Despoina Vokou; Aristotle University of Thessaloniki, Greece

Local Organizers
Laboratori d’Anàlisis Palinològiques. Universitat Autònoma de Barcelona (LAP-UAB)
Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Unidad de Excelencia Marí de Maeztu MinECo,
MDM2015-0552
Unitat Botànica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, (BABVE-UAB)

On behalf of the Associations
Asociación de Palinólogos de Lengua Española (APLE)
Association des Palynologues de Langue Française (APLF)
Gruppo di Palinologia e Paleobotanica della Società Botanica Italiana (GPPSBI)
Società Botanica Italiana onlus (SBI)
Aerobiological comparison between Plasencia and Cáceres (SW Spain)

Monroy-Colín A.1, Tormo-Molina R.1, Fernández-Rodríguez S.1, Silva-Palacios I.1, Maya-Manzano J.M.1, Gonzalo-Garrio A.2

1University of Extremadura, Spain; 2Infanta Cristina University Hospital, Badajoz, Spain

bioamc@outlook.com

Two cities in Extremadura region (SW of Spain) as Cáceres (CC) and Plasencia (PL) have been aerobiologically monitored. Surroundings from CC were mainly cereal crops and some holm oak ‘dehesas’ and from PL were mainly cork oak forests, olive crops and river bank woods from a mountainous landscape. The aim of this work is to develop a first comparison between the two sites using aerobiological data.

Aerobiological sampling was performed using Hirst volumetric sampler for one whole year (2016). Samplers were located in CC on the terrace at the third floor of the School of Technology building at the University of Extremadura campus and in PL on the terrace at the second floor of the hospital Virgen del Puerto building. The two places were separated by 71 km in straight line with similar altitude a.s.l. (CC 457 m - PL 465 m). Meteorological data were provided from the government meteorological agency (AEMET).

Meteorological data for the analyzed year showed that rain was lower in CC (606 mm) than in PL (765 mm). Average temperature was 0.7ºC lower in CC (16.7ºC) than in PL (17.5ºC). Annual average total pollen concentration was lower in CC (80 pollen grains m\(^{-3}\)) than in PL (117 pollen grains m\(^{-3}\)). Most of these differences were due to *Quercus* pollen, much more abundant in PL (39 pollen grains m\(^{-3}\)) that in CC (18 pollen grains m\(^{-3}\)). Moreover, Poaceae pollen were also more frequent in PL (40 pollen grains m\(^{-3}\)) than in CC (34 pollen grains m\(^{-3}\)), the same with *Olea* pollen in PL (12 pollen grains m\(^{-3}\)) and in CC (8 pollen grains m\(^{-3}\)). Nevertheless, *Platanus* pollen was better represented in CC (4 pollen grains m\(^{-3}\)) than in PL (2 pollen grains m\(^{-3}\)). Similar values were reached for the rest of the pollen types except for *Alnus* pollen, with higher concentration in PL (3 pollen grains m\(^{-3}\)) than in CC (1 pollen grains m\(^{-3}\)). Seasonal distributions were similar in both places, with maximum concentrations in May, with total pollen peak reached the same day, 21 May (CC 1117 pollen grains m\(^{-3}\) - PL 1581 pollen grains m\(^{-3}\)).

Seasonal pollen distribution in CC and PL was similar, with differences in total pollen concentrations due to the abundance of different pollen sources. In CC the influence of ornamental trees as planes were higher than in PL. Notwithstanding, in PL pollen sources from surrounding oak forest and the olive crops close to the sampler were responsible for the higher values found.