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1. INTRODUCTION

A Banach space operator T, T € B(X), is said to be hereditarily nor-
maloid, T € HN, if every part of T (i.e., every restriction of T' to an in-
variant subspace) is normaloid; a T' € HN is totally hereditarily normaloid,
T € THN, if every invertible part of T' is also normaloid, and a T' € B(X) is
completely (totally) hereditarily normaloid, T € CHN, if either T € THN or
T — Al € HN for every complex number A. The class CHN is large. In par-
ticular, Hilbert space operators T', T' € B(#), which are either hyponormal
(|T*)? < |T|?) or p-hyponormal (|T*|? < |T|?" for some 0 < p < 1) or w-
hyponormal (if T has the polar decomposition T = U|T|, and T = |T|%U|T|%
denotes the Aluthge transform of T, then |T*| < |T| < |T|) are THN oper-
ators. Again, totally x-paranormal Hilbert space operators (||(T — A )*z||? <
|[(T — X)z||? for every unit vector z) are HN operators, and paranormal
operators T € B(X) (||Tz||? < ||T?z|| for all unit vectors z € X) are THN
operators. (We refer the reader to the monograph [15] for information on
these classes of operators.) T HN operators were introduced in [10], and
have since been studied in [13] and [12]. In this note we study operators
T € CHN, and prove (amongst other things) that the Riesz projection asso-
ciated with a X\ € isoo(T), T € CHN N B(H), is self-adjoint if and only if
(T — M)~Y0) C (T* — XI)~1(0). Operators T € CHN have the important
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property that both 7" and the conjugate operator T* have the single-valued
extension property at points A which are not in the Weyl spectrum of T'; we
exploit this property to prove a-Browder and a-Weyl theorems for operators
T € CHN. Studies of this type for individual classes of operators inT € CHN
have been carried out by a number of authors in the recent past (see, for ex-
ample, [4, 6, 7, 8, 9, 10, 17, 20, 23, 26, 31, 34]; see also [1, Chapter 3] for a
state of the art introduction to Browder-Weyl theorems).

Recall that an operator T' € B(X) is said to be Fredholm, T € ®(X),
if T(X) is closed and both the deficiency indices a(T) = dim(T~'(0)) and
B(T) = dim(X /T (X)) are finite, and then the index of T, ind(T), is defined
to be ind(T) = a(T) — S(T). The ascent of T, asc(T), is the least non-
negative integer n such that 7-"(0) = T ("*1)(0) and the descent of T,
dsc(T), is the least non-negative integer n such that T"(X) = T"*1(Xx). We
say that T is of finite ascent (resp., finite descent) if asc(T — A\I) < oo (resp.,
dsc(T — M) < oo) for all complex numbers A. We shall, henceforth, shorten
(T — M) to (T — A). The operator T is Weyl if it is Fredholm of zero index,
and T is said to be Browder if it is Fredholm “of finite ascent and descent”.
Let C denote the set of complex numbers. The Browder spectrum o(7") and
the Weyl spectrum o, (T) of T are the sets oy(T) = {A € C : T — X is not
Browder} and 0,(T) = {A € C : T — X is not Weyl}. Let mo(T") denote the
set of Riesz points of T (i.e., the set of A € C such that T'— X is Fredholm of
finite ascent and descent [5]), and let myo(T") denote the set of eigenvalues of
T of finite geometric multiplicity. The operator T' € B(X) is said to satisfy
Browder’s theorem if o(T') \ 0, (T) = mo(T), and T is said to satisfy Weyl’s
theorem if o(T) \ 0y (T) = meo(T). Recall [18] that Weyl’s theorem for T
implies Browder’s theorem for 7', and Browder’s theorem for 7' is equivalent
to Browder’s theorem for 7.

The (Fredholm) essential spectrum o.(T') of T € B(X) is the set o.(T) =
{A € C: T — X is not Fredholm}. If we let acco(T') denote the set of accu-
mulation points of o(T"), then 0.(T) C 04,(T) C 0y(T) C 0.(T) U acco(T).
Let mq0(T') be the set of A € C such that A is an isolated point of o,(7") and
0 < a(T — A) < oo, where 0,(T) denotes the approximate point spectrum
of the operator T. Then 7y(T') C moo(T) C mao(T). We say that a-Weyl’s
theorem holds for T if

0aw(T) = 0a(T) \ a0 (T),

where 04,(T) denotes the essential approximate point spectrum of T (i.e.,
Oaw(T) = Moo (T + K) : K € K(X)} with K(X) denoting the ideal of
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compact operators on &X). Let & (X) ={T € B(X): a(T) < oo and T(X) is
closed} (resp., @_(X) = {T € B(X) : B(T) < oo}) denote the semi-group of
upper semi-Fredholm (resp., lower semi-Fredholm) operators in B(X) and let
O (X) ={T € & (X) : ind(T) < 0}. Then 04y (T) is the complement in C of
all those X for which (T'— X) € @ (X) [27]. The concept of a-Weyl’s theorem
was introduced by Rakocvié: a-Weyl’s theorem for T' = Weyl’s theorem for
T, but the converse is generally false [29]. If we let 04,(T") denote the Browder
essential approximate point spectrum of T,

oap(T) =N{0(T+K) : TK = KT and K € K(X)}
={Ae€C:T—-X¢ o (X)or asc(T — \) = oo},

then 04,(T) C 04(T). We say that T satisfies a-Browder’s theorem if
oab(T) = 0aw(T) [27]'

An operator T' € B(X) has the single-valued extension property at Ay € C,
SVEP at )¢ for short, if for every open disc D), centered at \g the only analytic
function f : D), — X which satisfies

(T—A)f(A)=0 forall A € Dy,

is the function f = 0. Trivially, every operator 7" has SVEP at points of the
resolvent p(T') = C\ o(T); also T has SVEP at A € isoo(T"). We say that T
has SVEP if it has SVEP at every A € C. It is known that a Banach space
operator T with SVEP satisfies Browder’s theorem [3, Corollary 2.12].

The quasinilpotent part Ho(T — \) and the analytic core K(T — \) of
(T — \) are defined by

HO(T—A):{:EEX: (T—A)%H%:o}

lim ||
n—--aox
and

there exists a sequence {z,} C X and
K(T—-XN=< z€X : §>0 for which z = zo, (T — \)(zpt1) = x4
and ||z, || < 6™||z| for alln =1,2,...

We note that Ho(T'—\) and K (T'—\) are (generally) non-closed hyperinvariant
subspaces of (T'— A) such that (T'—X)"%(0) C Hy(T' —\) forall¢ =0,1,2,...
and (T'— A\)K(T — X\) = K(T — \) [24]. The operator T' € B(X) is said to be
semi-regular if T'(X) is closed and T 1(0) C T°(X) = NpenT™(X); T admits
a generalized Kato decomposition, GK D for short, if there exists a pair of
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T-invariant closed subspaces (M, N) such that X = M @& N, the restriction
T'|ar is quasinilpotent and T'|y is semi-regular. An operator T' € B(X) has a
GKD at every A € isoo(T), namely X = Ho(T — \) ® K(T — \). We say that
T is of Kato type at a point A if (T'— \)|s is nilpotent in the GK D for (T —\).
If T— X is Kato type, then K(T —X) = (T'—X)*°(X) [3]. Fredholm (also, semi-
Fredholm) operators are Kato type [21, Theorem 4]. (For more information
on semi-Fredholm operators, semi-regular operators and Kato type operators,
see [1] and [25].)

2. RESULTS

The following theorem characterizes isolated points of the spectrum of an
operator T' € CHN as the poles of the resolvent of T. The proposition is
proved in [10, Lemma 2.1] for the case in which ' € THN, but we include
the proof here for completeness.

PROPOSITION 2.1. If T € CHN and X € isoo(T), then X is a simple pole
of the resolvent of T

Proof. If X € isoo(T), then
X =Hy(T-)\&K(T-)),

where Ho(T — X) # {0} and (T — N)K(T — X\) = K(T — \) [24]. Set Ty =
T|for—r)- Then Ty € CHN, o(T1) = {A} and o(T|gr—»n)) = o(T) \ {A}. If
A = 0, then (T} being normaloid, it follows that) T} = 0, Wthh implies that
Ho(T) = T (0). Let A # 0. Then, since CHN operators are closed under
multiplication by non-zero scalars, we may assume that A=1. If T —uy € HN
for all 4 € C, then o(T1 — 1) = {0} = ||T1 = 1|| =0 = T1 = I|gyr—1)- I,
instead, T' € THN, then Ty € THN and sup ||T7'|| < 1, where the supremum
is taken over all integers n. Applying [22, Theorem 1.5.14], it follows that
Ty = I|gyr—1y) = Ho(T —1) = (T'—1)"(0). Thus Ho(T'—X) = (T'—X)"}(0),
which implies that (T — )X = 0@ (T — NK(T —\) = K(T —)\) = X =
(T —X)"1(0) @ (T — A\)X. Hence ) is a simple pole of the resolvent of 7. 1§

An operator T € B(X) is said to be isoloid (resp., reguloid) if A €
isoo(T) = X is an eigenvalue of T (resp., A € isoo(T) = (T — A)~'(0) and
(T — X)X are complemented in X'). Evidently, the reguloid property implies
the isoloid property. The following corollary is an immediate consequence of
Proposition 2.1.
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COROLLARY 2.2. Operators T € CHN are reguloid.
COROLLARY 2.3. 7o(T) = moo(T') for operators T € CHN.

Proof. Evidently, mo(T') C moo(T'). For the reverse inclusion, apply Pro-
position 2.1 to A € isoo(T). |

Recall, [22, p. 42], that a T' € B(X) is said to be a Riesz operator if, for
each A € C\ {0}, both the deficiency indices are finite.

COROLLARY 2.4. An operator T € CHN such that o(T') is countable with
0 as its only limit point is a Riesz operator if and only if a(T — \) < oo for
all non-zero X € o(T).

Proof. Let 0 # XA € o(T'). Then X € isoo(T'), and it follows from Proposi-
tion 2.1 that asc(T — A) =dsc(T' —A) < 1= a(T — \) = (T — \) < o [19,
Proposition 38.5] = T is a Riesz operator. The necessity being obvious, the
proof is complete. 1

Observe that as a Riesz operator, the operator T' of Corollary 2.4 is
a decomposable operator such that the local spectral subspaces Xp(F) =
{z € X : op(z) C F} are closed and finite dimensional for every F' C C\ {0}
[22, Theorem 1.4.7]. (Here or(z) denotes the local spectrum of T' at = [22,
p. 16].) If ¥ = # is a Hilbert space, then (by a well known result of T.T. West
-see [5, Theorem 3.52.]) T is the sum of a compact and a quasi-nilpotent op-
erator: more is true in this case, as we shall see below.

A subspace M of X is said to be orthogonal to a subspace N of X, M 1 N,
in the sense of G. Birkhoff, if ||m|| < ||m + n|| for every m € M and n € N
[14, p. 93]. This asymmetric definition of orthogonality coincides with the
usual concept of orthogonality in the case in which X is a Hilbert space. Let
ox(T) ={X € a(T) : |\| = ||T||} denote the peripheral spectrumof T' € B(X).

PROPOSITION 2.5. Let a and 8 be eigen-values of an operator T € CHN,
with corresponding eigen-spaces N and M (respectively), such that |a| < |S].
Ifa =0, then M L N, and ifa # 0, then M and N are mutually orthogonal.

Proof. The proposition is proved in [10] for the case in which T € THN,
but here is a short proof. Let £ denote the subspace generated by M and
N. Then Ty =T|s € CHN, and § € 0,(T1). Applying [19, Proposition 54.4]
it follows that M | N. If a« # 0 and T'— XA € HN for every A € C, then
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A=T —B € HN, A750) = M and, for p = o — 8, (A — p)~1(0) = N;
since |u] > 0 we have N 1 M. Again, if « # 0 and T € THN, then
A=T;'€ THN, (A—a ")7'(0) = N and (A — B~")~1(0) = M; since
|87 < |a!| we have N L M. 1§

PROPOSITION 2.6. If an operator T'€ CHN N B(H) has countable spec-
trum with 0 as its only limit point, then T is normal.

Proof. The isolated points of a CHN operator being poles of the resolvent
of T, the operator T is spectrally normaloid (in the terminology of [19, p. 227]).
Enumerating the points of o(T'), allowing for repetition, according to their
absolute values by |A\1| > |Aa| > ..., it follows that there exists a non-empty
finite set S = {Ap,,..., Am, } such that o(T) = S. Let A\, € S. Then the
spectral projection P, corresponding to the simple pole A\, has norm 1 and
(T — X,)7H0) L (T — M\)H (see [19, Proposition 54.4]). In the setting of
our Hilbert space #, this implies that (7" — \,) '(0) reduces 7" and 71 =
T|(r—x, )1 € CHN. Repeating this argument, starting with T, it follows that
Ha = Vosreomn) (T — A)~1(0) reduces T and Ty = T'|3ew, € CHN. We claim
that o(Ty) = {0}. For if o(Ty) # {0}, then there exists a 0 # p € o(Tp)
such that pu € o,(Tp), and hence that (T — ) '(0) reduces Tp. But then
(To — 1) ~1(0) € Hy. Our claim having been established, it follows that Ty is
a quasi-nilpotent operator. Since Ty € CHN implies ||Ty|| = 0, we conclude
that 7" is a diagonal operator. |

Proposition 2.6 implies in particular that compact paranormal operators
in B(H) are normal. Staying for the moment with Hilbert spaces, it is ap-
parent from Proposition 2.1 that the Riesz projection Py associated with a
A €isoo(T), T € CHN, is in general not self-adjoint: the following theorem
gives a necessary and sufficient condition for Py to be self-adjoint.

THEOREM 2.7. If T' € B(H)NCHN and X € isoo(T), then Py is self-
adjoint if and only if (T — X\)~1(0) C (T* — X)~1(0).

Proof. If A € isoo(T) and T € CHN, then
H=Hoy(T-N@K(T-X\=(T-)N"0)a&(T-NH
as a topological direct sum and 7" has an upper triangular matrix decompos-

T R
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where o(T7) = {\} and O'(Tg) = o(T) \ {\}. Observe that P\H = Hy(T —
A = (T =)\~ 1( ) and P;'(0) = (T — A\)H. Thus, if Py is self-adjoint,
then P,\’Hi = P, (0). Slnce PHY = (T — )H' = (T* — X)71(0), the
condition (T'— X)~1(0) C (T* — X\)~1(0) is necessary. Conversely, assume that
(T — \)~10) C (T* — X\)~1(0). Since z = 21 ® 79 € (T — A\)~1(0) if and only
if o = 0 and z; € (T} — A\)~1(0), and since (T — \)~1(0) C (T* — X)~1(0),
Tyx1 = 0= Ty, and so also T, is the 0 operator. Consequently, (T — X)~(0)
reduces T' = P)Tl(O)J- = P\'H = P, is self-adjoint. |

Theorem 2.7 has been proved for hyponormal operators by Stampfli [33],
for w-hyponormal operators by Han, Lee and Wang [17], for paranormal op-
erators by Uchiyama [34], and for totally *-paranormal operators by Han and
Kim [16]. Observe that points A € isoo(T) (resp., 0 # A € isoo(T)) of
a hyponormal or totally *-paranormal operator T (resp., w-hyponormal or
paranormal operator T') are normal eigen-values of the operator. Evidently,
Theorem 2.7 holds for M-hyponormal operators T for all A € isoo(T'), and for
quasihyponormal operators for all 0 # A € isoo(T'). An extension of Theorem
2.7 is given by the following corollary.

COROLLARY 2.8. Suppose that an operator T € B(H) has a triangulation

p_ [T (1

0 Ty Ho
such that Ty € CHN, T3 is nilpotent and o(T1) C o(T) C o(T1) U {0}. If the
non-zero isolated eigen-values of Ty are normal, and if (T} — \)~'(0) @ 0 C

(T* —N)71(0) for a0 # X € isoo(T), then the Riesz projection Py associated
with A is self-adjoint.

Proof. If 0 # X € isoo(T), then X\ € isoo(T}), and it follows from the
proof of Theorem 2.7 that 77 — A has a triangulation

n=[3 5] (2% )

and T — X has a triangulation

0 0 Ty, )
T—A=|0 Ty =\ Ty :[82](?),
0 0 T5 — A 2
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Ty T
0 T3 — A\
Hy = (H1 © M) ® Ho. Evidently,

where A = [0 T], B = [ ] is invertible, #; = (Ty —\)~1(0) and

P\H =Hy(T — \) = {m:xl@xg €M, OH,y : nlg{.loHT"mH% :0}
1
~o}

llzo||* < ||B7Y||[|B"aa||F — 0 asn — oo,

=(T—2)" H0) €
P (0) = P, is

bl AB™!
:{m:xl@wgeﬂl@ﬂgznlggo‘“ ml]

BnZE2

Since B is invertible,

) 0

(T* — X)71(0). But then A =0= PyH = (T* — )~ 1(0
self-adjoint. 1

Let v(T),

which implies that 2o = 0. Hence P\H = (11 — \)~ ( )@
)

~(T) = inf{% tx € X/TI(O)},

denote the reduced minimum modulus of T (with the convention that y(7T') =
oo if T'=0). Then v(T*) = y(T'), and T'(X) is closed if and only if v(T") >
0 [22, p. 203]. The following theorem will play an important part in our
considerations below.

THEOREM 2.9. If T € CHN, then T and T* have SVEP at points A €
o(T) \ ow(T).

Proof. Let X € o(T) \ 0(T); then T — X € &(X) and ind(T — \) = 0.
Suppose to the contrary that 7' does not have SVEP at A. Then A € acc op,(T')
[3, Theorem 2.6], and so there exists a sequence {\,} of non-zero eigen-values
of T converging to A. Choose A, € {\,}. Recall from Proposition 2.5 that
the eigenspaces corresponding to non-zero eigenvalues of T' are mutually or-
thogonal, and if A = 0 then the eigenspace corresponding to the eigenvalue
Am is orthogonal to the eigenspace corresponding to the eigenvalue 0. Thus,
dist(z, (T — X)~1(0)) > 1 for every unit vector z € (T — \,,) 1(0). Since

5O, A) = sup{dist(z, (T — A)"1(0)) : z € (T — Aw) 1(0),||z]| = 1} > 1
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for all m,
Am — A
%HO asm — 0.
But then
(T—)\)—M—)() as m —
7 = 50w, V) e

ie., (T'— X)X is not closed. Since T'— A € ®(X), we conclude that T has
SVEP at A. Applying [3, Corollary 2.10], it now follows that T™* also has
SVEP at \. 1

Theorem 2.9 has a number of consequences, amongst them the following.
Let 04, (T) denote the Weyl surjectivity spectrum {A\ € C: T — X ¢ ®_(X)
or ind(T"— X) 2 0}, and let ®4.(T) = {A € C: T — X € &,(X)}, where
® (X) denotes the set of T which are either upper semi-Fredholm or lower
semi-Fredholm, denote the semi-Fredholm region of T' € B(X).

COROLLARY 2.10. Operators T € CHN have SVEP at points A € &4 (T).
In particular, operators T € CHN have SVEP at points A ¢ o4,(T) and

A ¢ osy(T).

Proof. f T —X € ®4(X), then T — X is Kato type [21, Theorem 4]. Hence,
if T' does not have SVEP at A, then A € acco,(T") [3, Theorem 2.6]. But then,
by the argument of the proof of Theorem 2.9, (T — X)X is not closed. Since
T — X € &4(X), we have a contradiction. Hence T has SVEP at A. 1

COROLLARY 2.11. T'— X € ®(X) for an operator T € CHN if and only if
T — )€ d_(X). Consequently, 0.(T) ={A € C: (T — \) = oco}.

Proof. The following implications hold:

T-Xe€® (X¥) = T has SVEP at A (see Theorem 2.9)
= asc(T — X < oo (see [3, Theorem 2.6])
= ind(T'— X) <0 (see [19, Proposition 38.5])
= a(T -\ <B(T-)) <o
= T -XedX).

This completes the proof. |
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COROLLARY 2.12. If Q is a connected component of ®(T) = {\ € C :
T—X€e®X)} foraT € CHN, then either
(I) ind(T — X) =0 and asc(T — \) = dsc(T — \) < oo for all A € Q, or
(IT) ind(7T — X) <0, asc(T — A) < 0o and dsc(T — A) = oo for all A € Q.

Proof. Since T has SVEP at points A € ®(T'), asc(T — ) < oo [3, Theorem
2.6] = ind(T' — X) < 0. If also dsc(T' — A\) < oo, then we have (I); otherwise,
we have (II) (see [19, Theorem 51.1]). 1

COROLLARY 2.13. IfT € CHN, then p(T) = {\ € C: T—\ is surjective}.

Proof. If T — X is surjective, then dsc(T — ) = 0 = B(T — A). This,
since 0.(T) = {A € C : B(T — A) = oo} (see Corollary 2.11) implies
that T'— XA € ®(X) = asc(T' — A\) = 0 (by Corollary 2.12(I)) = T — X is

injective. |1

Corollaries 2.11, 2.12 and 2.13 have been proved by Schmoeger [32] for
paranormal operators T

Recall from [18] and [28] that whereas the spectral mapping theorem holds
for the Browder and the Browder essential approximate point spectra, it fails
(in general) for the Weyl and the Weyl essential approximate point spectra.
The following corollary shows that the operators in the class CHN are much
better behaved. Let H(T') denote the set of functions f which are defined and
analytic in an open neighbourhood of o(T).

COROLLARY 2.14. If T € CHN, then f(0,(T)) =
= 0w (f(T")), f(0au(T)) = 0aw(f(T)) and f(osu(T))
feHT).

Proof. As observed in Corollary 2.10, T' has SVEP at points A such that
T—-Xe€ d(X). Thus, if T — X € &, (X), then asc(T — \) < oo = ind(T" —
A) < 0; again, if T — X € &_(X), then T — X € ®(X) (see Corollary 2.11)
= ind(T—X) < 0. Now apply [32, Theorem 2] to obtain f(0,(T")) = 0w (f(T)),
and [30, Theorems 2 and 4] to obtain f (04w (T)) = 0aw(f(T)) and f (05 (T)) =
osw(f(T)). To complete the proof, we observe that o(T) = o,(T*), and

ow(f(T*)) = ow(f(T)) = f(ow(T)) = f(ow(T)). 1

Parts of Corollary 2.14 have been observed for M-hyponormal operators
by Hou and Zhang [20], for paranormal operators (on a Hilbert space) by
Curto and Han [9], and for x-paranormal operators by Han and Kim [16].

2

w(f(T)) = flow(T))
osw(f(T)) for every
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(We remark that M-hyponormal operators and *-paranormal operators have
the finite ascent property [16]; hence they have SVEP.) It is apparent from
the proof of Corollary 2.14 that a sufficient condition for 4, (T") (or, 05, (T)),
for a general T € B(X), to satisfy the spectral mapping theorem is that T
has SVEP at points A ¢ 04, (T") (resp., A ¢ 05,(T)); cf. [8, Theorem 3.1].

COROLLARY 2.15. If T € CHN, then f(T) and f(T*) satisfy a-Browder’s
theorem for every f € H(T).

Proof. In view of Corollary 2.14, it will suffice to prove that T and T*
satisfy a-Browder’s theorem. Observe that if A ¢ 0,4,,(T), then (as seen above)
asc(T — A) <00 = A ¢ 04(T). Since 04y(T) C 04(T) for every operator T,
it follows that 04,(T) = 04(T") = T satisfies a-Browder’s theorem. Now let
A ¢ 05(T). Then T — X € ®(X) (see Corollary 2.11) and ind(T — X) > 0.
Hence ind(T — A\) =0 = asc(T — A) = dsc(T — A) < oo [3, Corollary 2.10] =
A oap(T*) = 0ap(T*) C 05uy(T) = 0 (T*). But then 04y (T*) = 00 (T*) =
T* satisfies a-Browder’s theorem. |

WEYL'S THEOREM. An operator T' € B(X) satisfies Weyl’s theorem if
and only if 7" has SVEP at points A ¢ 0,,(T") and 7¢(T") = m(T') [11, Theorem
2.3]. Combining this with Theorem 2.9 and Corollary 2.3, it follows that
operators T' € CHN satisfy Weyl’s theorem. Furthermore, since o(T%) =
o(T), ow(T*) = ouw(T), T* has SVEP at points A ¢ 0,(7T*) (by Theorem
2.9), and since A € m(T*) = X € is00(T) = X € ©np(T) = w(T*) =
m00(T) = moo(T™*) = moo(T), T* satisfies Weyl’s theorem. More is true:

COROLLARY 2.16. If T € CHN, then f(T) and f(T*) satisfy Weyl’s the-
orem for every f € H(T).

Proof. Both T and T™ being isoloid (by Proposition 2.1), f(T') and f(T™*)
satisfy Weyl’s theorem by [31, Theorem2]. |

As earlier observed, a-Weyl’s theorem for a T € B(X) implies Weyl’s
theorem for T', but the reverse implication fails in general. Even the hypothesis
T € CHN has SVEP is not sufficient for T' to satisfy a-Weyl’s theorem.
The (forward) unilateral shift T € B(¢?) N CHN has SVEP and satisfies
04(T) = the boundary of the unit disc D, 04,(T) = D and 7ao(T) = 0;
evidently, 04(T") \ 0aw(T) # ma(T). Observe however that 7™ satisfies a-
Weyl’s theorem: the following theorem shows that this phenomenon persists
for operators T € CHN.
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THEOREM 2.17. Let T € CHN. If T (resp. T*) has SVEP at points
A € 04w(T), then f(T*) (resp., f(T)) satisfies a-Weyl’s theorem.

Proof. Evidently, both f(T) and f(T*) satisfy Weyl’s theorem. The hy-
pothesis on T' (resp., T*) implies that T (resp., T*) has SVEP (see Theorem
2.9), and this in turn implies that f(T) (rvesp., f(T™) = f(T™)) has SVEP [22,
Theorem 3.3.6]. The proof now follows from [2, Theorem 3.6], which says that
if f(T) (resp., f(T%)) has SVEP, then Weyl’s theorem holds for f(7™) (resp.,
f(T)) if and only if a-Wey!’s theorem holds for f(7*) (resp., f(T)). 1

We end this paper with a necessary and sufficient condition for operators
T € B(X), which satisfy a-Browder’s theorem, to satisfy a-Weyl’s theorem.
(Recall from Corollary 2.15 that CH N operators satisfy a-Browder’s theorem.)
The following lemma will be required.

LEMMA 2.18. T € B(X) satisfies a-Browder’s theorem if and only if
T has SVEP at all points A € 04(T') \ 0u(T).-

Proof. The necessity is trivial: if T' satisfies a-Browder’s theorem, then
Oaw(T) = oa(T), and if X € 04(T) \ 0a(T), then asc(T' — A) < o0 = T
has SVEP at A. For the sufficiency, assume that T" has SVEP at every X\ €
o(T) \ 0w (T). We prove that o4 (T) C 04y (T'). This, since 04y (T) C 0ap(T)
for every T € B(X), would then imply o4 (T) = 04 (T) (and hence that
a-Browder’s theorem holds for T'). Suppose that A ¢ 04,(T"). Then T' — X €
®, (X) and ind(T — A) < 0. Since T'— X € ¢, (X) implies T — X is Kato type,
and since T has SVEP at J, it follows from an application of [3, Theorem 2.6]
that asc(T — A) < co. Hence A ¢ 04(T). 1

THEOREM 2.19. T' € B(X) satisfies a-Weyl’s theorem if and only if T
satisfies a-Browder’s theorem and T — )\ is Kato type at every \ € mqo(T).

Proof. If T satisfies a-Weyl’s theorem, then T satisfies a-Browder’s the-
orem and 04 (T) \ 0ap(T) = 04(T) \ 0au(T) = ma0(T). Again, since (1) =
0a(T) \ 0ap(T) = T — X € &,(X) at points A € me(T), T — X is Kato
type at points A € mao(T). For the sufficiency, we start by observing that
0ap(T) = 04(T) and T has SVEP at points A € 04(T) \ 04w(T) (by Lemma
2.18). We prove next that o4(T) \ 04(T) = wao(T). Let X € 04(T) \ 0a(T).
Then T'— XA € &,(&X) and asc(T — A\) < oo, so that T'— X is Kato type
and asc(T — A) < oo. Hence A\ ¢ accoy(T) [2, Theorem 2.3]. Obviously,
0 < (T —X) < oo; hence X € m0(T) = 04(T) \ 0ap(T) C mao(T). For the
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reverse inclusion, let A € m,0(T"). Then (by hypothesis) T' — X is Kato type,
ie., X = (T — \)"P(0) & M for some integer p > 1 and some subspace M of
X such that T'| s is semi-regular. Since a(T' — A) < oo, dim(T' — X)7P(0) < oo
(which implies that T'— X is essentially semi-regular). Since o,(T) does not
cluster at A\, T"has SVEP at A (and asc(T'—\) < oo) [3]. Hence T—\ € & (X)
and asc(T — ) < oc. Conclusion: A & 04,4(T) = A € 04(T) \ 0u(T). 1

COROLLARY 2.20. T' € CHN satisfy a-Weyl’s theorem if and only if

T — X\ is Kato type at points X € mao(T).
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