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Abstract : A Banach space operator T ∈ B(X ) satisfies a local growth condition of order m
for some positive integer m , T ∈ loc(Gm), if for every closed subset F of the set of complex
numbers and every x in the glocal spectral subspace XT (F ) there exists an analytic function
f : C\F → X such that (T −λ)f(λ) ≡ x and ||f(λ)|| ≤ K[dist(λ, F )]−m||x|| for some K > 0
(independent of F and x). Browder-Weyl type theorems are proved for perturbations by an
algebraic operator of operators which are either loc(Gm) or polynomially loc(Gm).
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1. Introduction

A Banach space operator T , T ∈ B(X ), has the single-valued extension

property at λ0 ∈ C, SVEP at λ0 for short, if for every open disc Dλ0 centered
at λ0 the only analytic function f : Dλ0 → X which satisfies

(T − λ)f(λ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0. T has SVEP if it has SVEP at every λ ∈ C. The single
valued extension property, introduced by Dunford [9, 10], plays an important
role in local spectral theory and Fredholm theory (see [17] and [1]; also see
[14]). Evidently, every T has SVEP at points in the resolvent ρ(T ) = C\σ(T )
or the boundary ∂σ(T ) of the spectrum σ(T ). It is easily verified that SVEP
is inherited by restrictions, and that if T has SVEP and TX = XY for some
injection X, then Y has SVEP.

An operator T is said to satisfy a growth condition of order m, or to be a
(Gm)-operator, if there exists a constant K > 0 such that

||(T − λ)−1|| ≤ K

[dist(λ, σ(T ))]m
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for all λ /∈ σ(T ). Hyponormal operators are (G1)-operators [25] and spectral
operators of type m− 1 are (Gm)-operators [11, Theorem XV.6.7]. Not every
T ∈ (Gm) has SVEP. To see this, start by observing that T ∈ (Gm) ⇒ T ∗ ∈
(Gm). Hence, if every T ∈ (Gm) has SVEP, then both T and T ∗ have SVEP.
But this is false, as follows from a consideration of the forward and backward
unilateral shifts on a Hilbert space.

For an arbitrary closed subset F of the set C of complex numbers and
T ∈ B(X ), let XT (F ) = {x ∈ X : (T − λ)fx(λ) ≡ x for some analytic
function fx : C \ F → X}. The glocal spectral subspace XT (F ) is a hyper-
invariant linear manifold of T [17, p. 220]. Let m be a positive integer. We
say that T ∈ loc(Gm) (or, T satisfies a local growth condition of order m)
if for every closed set F ⊂ C and every x ∈ XT (F ) there exists an analytic
function f : C \ F → X such that (T − λ)f(λ) ≡ x and

||f(λ)|| ≤ K[dist(λ, F )]−m||x|| for some K > 0

(independent of F and x). Hyponormal operators are loc(G1) [25, 15] and
spectral operators of type m− 1 are loc(Gm) [11, Proof of Theorem XV.6.7].
Evidently, T ∈ loc(Gm) ⇒ T ∈ (Gm). It is known, [15, Proposition 2],
that if the Banach space X is reflexive (in particular, a Hilbert space), then
operators T ∈ loc(Gm) satisfy Dunford’s condition (C). Hence loc(Gm) oper-
ators T ∈ B(X ) such that X is reflexive have SVEP, which implies that both
T and T ∗ satisfy a-Browder’s theorem. This observation forms the starting
point of this paper. Let T ∈ loc(Gm) ∩ B(X ), X is reflexive. We prove
that f(T ) satisfies Weyl’s theorem and f(T ∗) satisfies a-Weyl’s theorem for
every function f which is analytic on a neighbourhood of σ(T ). The spec-
trum of an operator and its various distinguished parts are not stable under
perturbations by a compact operator, even a quasinilpotent operator. It is
proved that a-Browder’s theorem is inherited by perturbations of operators
T by Riesz operators which commute with T . Specializing to algebraic oper-
ators A which commute with T , it is proved that f(T + A) satisfies Weyl’s
theorem and f(T + A)∗ satisfies a-Weyl’s theorem for every f which is ana-
lytic on a neighbourhood of σ(T +A). A similar result holds for polynomially
loc(Gm) operators T which commute with A. Problems of the type considered
in this paper have been considered by other authors in the recent past, see
[2, 4, 5, 6, 19], but for operator classes independent of the class loc(Gm). The
results of this paper complement those from these papers.
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2. Notation and terminology

An operator T ∈ B(X ) is semi-Fredholm if it is either upper Fredholm or
lower Fredhlom, where T is upper Fredholm, T ∈ Φ+(X ), if T (X ) is closed
and the deficiency index α(T ) = dim(T−1(0)) is finite, and T is lower Fred-

holm, T ∈ Φ−(X ), if the deficiency index β(T ) = dim(X/T (X )) is finite;
T is Fredholm, T ∈ Φ(X ), if T ∈ Φ+(X )∩Φ−(X ). The semi-Fredholm index of
T , ind(T ), is the (finite or infinite) integer ind(T ) = α(T )−β(T ). The ascent of
T , asc(T ), is the least non-negative integer n such that T−n(0) = T−(n+1)(0)
and the descent of T , dsc(T ), is the least non-negative integer n such that
Tn(X ) = Tn+1(X ). We say that T is of finite ascent (resp., finite descent )
if asc(T − λI) < ∞ (resp., dsc(T − λI) < ∞) for all complex numbers
λ. We shall, henceforth, shorten (T − λI) to (T − λ). The operator T is
Weyl if it is Fredholm of zero index, and T is said to be Browder if it is
Fredholm “of finite ascent asc(T ) and descent dsc(T )”. Let C denote the
set of complex numbers. The Browder spectrum σb(T ) and the Weyl spec-
trum σw(T ) of T are the sets σb(T ) = {λ ∈ C : T − λ is not Browder} and
σw(T ) = {λ ∈ C : T − λ is not Weyl}. Let π(T ), π0(T ) and π00(T ) denote,
respectively, the set of poles of the resolvent of T , the set of Riesz points of T

(i.e., the set of λ ∈ C such that T −λ is Fredholm of finite ascent and descent
[3]), and the set of isolated points λ of σ(T ), λ ∈ isoσ(T ), which are eigen-
values of T of finite (geometric) multiplicity. In keeping with current usage
[13, 1], we say that an operator T ∈ B(X ) satisfies Browder’s theorem (resp.,
Weyl’s theorem ) if σ(T ) \ σw(T ) = π0(T ) (resp., σ(T ) \ σw(T ) = π00(T )).
Recall [13] that Weyl’s theorem for T implies Browder’s theorem for T , and
Browder’s theorem for T is equivalent to Browder’s theorem for T ∗.

The (Fredholm) essential spectrum σe(T ) of T ∈ B(X ) is the set σe(T ) =
{λ ∈ C : T − λ /∈ Φ(X )}. If we let accσ(T ) denote the set of accumulation
points of σ(T ), then

σe(T ) ⊆ σw(T ) ⊆ σb(T ) ⊆ σe(T ) ∪ acc σ(T ) .

Let πa0(T ) be the set of λ ∈ C such that λ is an isolated point of σa(T ),
λ ∈ isoσa(T ), and 0 < α(T − λ) < ∞, where σa(T ) denotes the approximate
point spectrum of the operator T . Then π0(T ) ⊆ π00(T ) ⊆ πa0(T ). T is said
to satisfy a-Weyl’s theorem if

σwa(T ) = σa(T ) \ πa0(T ),
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where σwa(T ) denotes the essential approximate point spectrum of T (i.e.,
σwa(T ) = ∩{σa(T + K) : K ∈ K(X )} with K(X ) denoting the ideal of
compact operators on X ). Let Φ−+(X ) = {T ∈ Φ+(X ) : ind(T ) ≤ 0}.
Then σwa(T ) is the complement in C of all those λ for which (T − λ) ∈
Φ−+(X ) [20]. The concept of a-Weyl’s theorem was introduced by Rakočvić:
a-Weyl’s theorem for T ⇒ Weyl’s theorem for T , but the converse is generally
false [21]. If we let σba(T ) denote the Browder essential approximate point

spectrum of T ,

σba(T ) =
⋂ {σa(T + K) : TK = KT and K ∈ K(X )}

= {λ ∈ C : T − λ /∈ Φ−+(X ) or asc(T − λ) = ∞},

then σwa(T ) ⊆ σba(T ). We say that T satisfies a-Browder’s theorem if
σba(T ) = σwa(T ) [20]. It is known [5, Lemma 2.18] that a Banach space

operator T with SVEP satisfies a-Browder’s theorem. Let σs(T ) denote the
surjectivity spectrum of T . The essential surjectivity spectrum σws(T ) of T

is the set ∩{σs(T + K) : K ∈ K(X )}. If we let Φ+
−(X ) = {T ∈ Φ−(X ) :

ind(T ) ≥ 0}, then σws(T ) is the complement in C of all those λ for which
(T − λ) ∈ Φ+

−(X ).
The quasinilpotent part H0(T − λ) and the analytic core K(T − λ) of

(T − λ) are defined by

H0(T − λ) =
{

x ∈ X : lim
n→∞ ||(T − λ)nx|| 1n = 0

}

and

K(T − λ) =



 x ∈ X :

there exists a sequence {xn} ⊂ X and δ > 0
for which x = x0, (T − λ)(xn+1) = xn

and ‖xn‖ ≤ δn‖x‖ for all n = 1, 2, . . .



 .

We note that H0(T−λ) and K(T−λ) are (generally) non-closed hyperinvariant
subspaces of (T −λ) such that (T −λ)−q(0) ⊆ H0(T −λ) for all q = 0, 1, 2, . . .

and (T − λ)K(T − λ) = K(T − λ) [18]. The operator T ∈ B(X ) is said to be
semi-regular if T (X ) is closed and T−1(0) ⊂ T∞(X ) = ∩n∈NTn(X ); T admits
a generalized Kato decomposition, GKD for short, if there exists a pair of
T -invariant closed subspaces (M, N) such that X = M ⊕ N , the restriction
T |M is quasinilpotent and T |N is semi-regular. An operator T ∈ B(X ) has a
GKD at every λ ∈ isoσ(T ), namely X = H0(T −λ)⊕K(T −λ). We say that
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T is of Kato type at a point λ if (T−λ)|M is nilpotent in the GKD for (T−λ).
If T − λ is Kato type, then K(T − λ) = (T − λ)∞(X ). Fredholm (also, semi-
Fredholm) operators are Kato type [16, Theorem 4]. (For more information
on semi-Fredholm operators, semi-regular operators and Kato type operators,
see [1] and [17].)

In the following, H(σ(T )) shall denote the class of functions f which are
analytic on a neighbourhood of σ(T ). We assume in the following that our

Banach space X is reflexive: this ensures that operators T ∈ loc(Gm) have

SVEP.

3. loc(Gm) operators and SVEP

The following (essentially known) lemma proves that operators T ∈
loc(Gm) are isoloid, i.e., points λ ∈ isoσ(T ) are eigenvalues of T . Recall
[8] that T is polaroid if every λ ∈ iso σ(T ) is a pole (no restriction on rank)
of the resolvent of T . Polaroid operators are isoloid.

Lemma 3.1. Operators T ∈ loc(Gm) are polaroid.

Proof. Evidently, loc(Gm) ⊆ (Gm); hence it would suffice to prove λ ∈
isoσ(T ) ⇒ λ ∈ π(T ) for operators T ∈ (Gm). Let λ0 ∈ isoσ(T ), and let
Γ = {λ : |λ− λ0| = ε} ⊂ ρ(T ) for some ε ≤ dist(λ0, σ(T ) \ {λ0}). Then

(λ0 − T )m =
1

2πi

∫

Γ
(λ0 − λ)m(λ− T )−1dλ ,

and

||(λ0 − T )m|| ≤ 1
2π

∫

Γ
|λ0 − λ|m||(λ− T )−1|| |dλ| ≤ 1

2π
εm K

εm
2πε ,

which tends to zero with ε. Hence H0(T − λ0) ⊆ (T − λ0)−m(0). Since
(T − λ0)−n(0) ⊆ H0(T − λ0) for every positive integer n, H0(T − λ0) =
(T − λ0)−m(0). The point λ0 being isolated in σ(T ),

X = H0(T − λ0)⊕K(T − λ0) = (T − λ0)−m(0)⊕K(T − λ0) .

Hence
(T − λ0)mX = 0⊕ (T − λ0)mK(T − λ0) = K(T − λ0) ,
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which implies that

X = (T − λ0)−m(0)⊕ (T − λ0)mX ,

i.e., λ0 is a pole (of order ≤ m) of the resolvent of T .

The fact that operators T ∈ loc(Gm) have SVEP (recall that our Banach
space X is reflexive) implies that T and T ∗ satisfy a-Browder’s [5, Lemma
2.18], hence also Browder’s theorem. More is true.

Theorem 3.2. If T ∈ loc(Gm), then f(T ) satisfies Weyl’s theorem and
f(T ∗) satisfies a-Weyl’s theorem for every f ∈ H(σ(T )).

Proof. T satisfies Browder’s theorem implies that σ(T )\σw(T ) = π0(T ) ⊆
π00(T ). Since λ ∈ isoσ(T ) ⇒ λ ∈ π(T ) (Lemma 3.1), π00(T ) ⊆ π0(T ). Hence
σ(T ) \ σw(T ) = π00(T ). Furthermore, since σ(T ) = σ(T ∗), σw(T ) = σw(T ∗)
and π00(T ) = π00(T ∗) (observe that λ ∈ π00(T ) ⇒ λ ∈ π0(T ) = π0(T ∗) ⊆
π00(T ∗), and conversely), T ∗ also satisfies Weyl’s theorem. Recall from [24,
Theorem 1] that f(B) satisfies Weyl’s theorem for every f ∈ H(σ(B)) for
an isoloid operator B satisfying Weyl’s theorem such that ind(B − λ) ≤ 0
for λ ∈ Φ±(B); recall also that if B has SVEP, then B − λ ∈ Φ±(X ) ⇒
ind(B − λ) ≤ 0 [1, Theorem 3.16 and Theorem 3.4]. Hence f(T )∗ = f(T ∗)
satisfies Weyl’s theorem. Evidently, f(T ) has SVEP. Since, for an operator
B with SVEP, B∗ satisfies Weyl’s theorem if and only if B∗ satisfies a-Weyl’s
theorem, see [1, Theorem 3.108], f(T ∗) satisfies a-Weyl’s theorem.

4. Perturbation by Riesz operators

An operator R ∈ B(X ) is a Riesz operator if R − λ ∈ Φ(X ) for all
λ ∈ C \ {0}. Equivalently, R is a Riesz operator if and only if the essential

spectral radius re(R) of R equals 0 [3, Theorem 3.3.1]. Compact operators,
also quasinilpotent operators, are Riesz operators. It is well known that if
Q ∈ B(X ) is a quasinilpotent operator which commutes with an operator
T ∈ B(X ), [Q,T ] = QT − TQ = 0, then σ(T + Q) = σ(T ). Moreover, if R is
a Riesz operator such that [R, T ] = 0, then σw(T + R) = σw(T ) [19, Lemma
2.2]. The following theorem extends this result to σwa(T +R) and σws(T +R).
We remark that parts (i) and (ii) of the following theorem are independent of
our standing hypothesis that the Banach space X is reflexive.
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Theorem 4.1. If R ∈ B(X ) is a Riesz operator such that [R, T ] = 0 for
some operator T ∈ B(X ), then we have the following.

(i) T ∈ Φ+(X ) ⇒ T + R ∈ Φ+(X ) and T ∈ Φ−(X ) ⇒ T + R ∈ Φ−(X ).

(ii) σwa(T + R) = σwa(T ), σws(T + R) = σws(T ) and σwa(T ) = σba(T )
⇒ σwa(T + R) = σba(T + R).

(iii) Furthermore, if T ∈ loc(Gm), then σwa(T + R) = σba(T + R).

Proof. (i) A proof of (i) appears in [23]: we include it here for complete-
ness. Let T ∈ Φ+(X ), and let

r+(T ) = sup{ε ≥ 0 : T − λ ∈ Φ+(X )for|λ| < ε}
= lim{dist(Tn, B(X ) \ Φ+(X ))} 1

n = lim{d+(Tn)} 1
n

denote the upper semi-Fredholm radius of T [26]. Since 0 = re(R) < r+(T ),
there exist a compact operator K and a positive integer n such that ||Rn −
K|| < d+(Tn). But then

0 < d+(Tn)− ||Rn −K|| ≤ d+(Tn −Rn + K)

⇒ Tn −Rn + K ∈ Φ+(X ) ⇒ Tn −Rn ∈ Φ+(X ) .

Since [R, T ] = 0 and Tn−Rn = (T −R)
∑n−1

j=1 Tn−1−jRj , it follows [3, Corol-
lary 1.3.4] that T −R ∈ Φ+(X ).

If T ∈ Φ−(X ), then T ∗ ∈ Φ+(X ∗), [R∗, T ∗] = 0 and R∗ is Riesz. Arguing
as above, it follows that T ∗ + R∗ ∈ Φ+(X ∗) ⇒ T + R ∈ Φ−(X ).

(ii) The argument of part (i) shows, indeed, that T ∈ Φ±(X ) ⇒ T + tR ∈
Φ±(X ) for all 0 ≤ t ≤ 1. Since the semi-Fredholm index is a continuous
function, ind(T + R) = ind(T ). Hence,

T − λ ∈ Φ−+(X ) ⇐⇒ T + R− λ ∈ Φ−+(X ) ,

T − λ ∈ Φ+
−(X ) ⇐⇒ T + R− λ ∈ Φ+

−(X ) ;

this proves σwa(T+R) = σwa(T ) and σws(T+R) = σws(T ). Recall that σba(T )
is the largest subset of σa(T ) which remains invariant under perturbations by
Riesz operators which commute with T [22, Theorem 5]; hence σwa(T ) =
σba(T ) ⇒ σwa(T + R) = σba(T + R).

(iii) Since T has SVEP, T satisfies a-Browder’s theorem (i.e., σwa(T ) =
σba(T )) [5, Lemma 2.18]. Thus (ii) implies that σwa(T + R) = σba(T + R).
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The conclusion σwa(T + R) = σba(T + R) of Theorem 4.1(iii) implies that
σ(T + R) \ σw(T + R) = π0(T + R) ⊆ π00(T + R) for Riesz operators R

commuting with operators T ∈ loc(Gm). The conclusion does not, however,
extend to σ(T + R) \ σw(T + R) = π00(T + R), as the following example
shows. Evidently, the trivial operator T = 0 ∈ loc(Gm), and the compact
operator K(x1, x2, x3, . . . ) = (x2

2 , x3
3 , . . . ) is a Riesz operator which commutes

with T . Trivially, σ(T +K) = σw(T +K) (= σwa(T +K) = σba(T +K)), but
σ(T + K) \ σw(T + K) = ∅ 6= π00(T + K) = {0}. Something more is required.
One such condition, which has been considered by Han and Lee [12], Oudghiri
[19], and Aiena and Guillen [2], is the following. An operator A ∈ B(X ) is
finitely isoloid if the points λ ∈ isoσ(A) ∈ π00(A).

Theorem 4.2. Let T be a finitely isoloid loc(Gm) operator. If R is a
Riesz operator which commutes with T , then T + R and T ∗ + R∗ satisfy
Weyl’s theorem. Furthermore, if R is quasinilpotent, then T ∗ + R∗ satisfies
a-Weyl’s theorem.

Proof. Both T and T ∗ satisfy Weyl’s theorem (by Theorem 3.2). Evidently,
[R, T ] = 0 = [R∗, T ∗], and both R and R∗ are Riesz operators. Since λ ∈
isoσ(T ∗) ⇒ λ ∈ iso σ(T ) ⇒ λ ∈ π(T ) = π(T ∗), the finitely isoloid hypothesis
on T implies that T ∗ is (also) finitely isoloid. Hence [19, Theorem 2.7] applies,
and we conclude that T + R and (T + R)∗ satisfy Weyl’s theorem. Now let
R be a quasinilpotent operator. Then T + R has SVEP [1, Corollary 2.12].
Arguing as in the proof of Theorem 3.2, it follows that T ∗ + R∗ satisfies a-
Weyl’s theorem.

Perturbation by algebraic operators. A ∈ B(X ) is algebraic if
p(A) = 0 for some non-trivial complex polynomial p(·). It is well known that
an operator F ∈ B(X ) such that Fn is finite dimensional for some positive
integer n is algebraic. Let A be an algebraic operator which commutes with
a loc(Gm) operator T . We prove in the following that T + A satisfies Weyl’s
theorem and T ∗+A∗ satisfies a-Weyl’s theorem. Similar results for operators
S which satisfy H0(S − λ) = (S − λ)−pλ(0) for some positive integer pλ and
all λ ∈ C, or which are paranormal Hilbert space operators, or which are
completely hereditarily normaloid have been proved, respectively, by Oudghiri
[19], Aiena and Guillen [2] and the author [6].

Fix an algebraic operator A (such that p(A) = 0) and operator T ∈
loc(Gm) such that [A, T ] = 0. Evidently, σ(A) = {µ1, µ2, . . . , µn} for some
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integer n ≥ 1. Let Ai = A|H0(A−µi) and Ti = T |H0(A−µi). Then,

Lemma 4.3. σb(Ti + Ai) = σw(Ti + Ai) for all 1 ≤ i ≤ n.

Proof. Since σ(Ai) = {µi} and p(Ai) = 0, p(µi) = p(σ(Ai)) = σ(p(Ai)) =
{0}. Hence

0 = p(Ai) = p(Ai)− p(µi) = (Ai − µi)tig(Ai)

for some positive integer ti and invertible g(Ai). Consequently, Ai − µi(
= A|H0(A−µi) − µiI|H0(A−µi)

)
is nilpotent. The commutativity of A and T

implies that H0(A−µi) is invariant for T ; hence Ti ∈ loc(Gm) has SVEP. Ap-
plying Theorem 4.1(iii), we conclude that Ti+Ai satisfies a-Browder’s theorem
⇒ Ti + Ai satisfies Browder’s theorem.

The proofs of the following two lemmas differ but only slightly from the
proofs of [6, Lemma 3.4 and Lemma 3.6]; the proofs are included here for the
reader’s convenience. (We remark here that the proof of Lemma 4.4 below,
as also of [6, Lemma 3.4], is inspired by that of [19, Lemma 3.3].)

Lemma 4.4. If N is a nilpotent operator which commutes with T , then
H0(T + N − λ) = (T + N − λ)−r(0), for some integer r ≥ 1, at points λ ∈
isoσ(T ).

Proof. We may assume that N t = 0 for some positive integer t. Choose
an integer s > t. Then, for every x ∈ X and λ ∈ C,

||(T − λ)sx|| 1s = ||((T + N − λ)−N)sx|| 1s

=

∥∥∥∥∥∥

s−1∑

j=0

(−1)j sCjN
j(T + N − λ)s−jx

∥∥∥∥∥∥

1
s

≤
s−1∑

j=0

[sCj ||N ||j ]
1
s ||(T + N − λ)s−jx|| 1s ,

which implies that
H0(T − λ) ⊆ H0(T + N − λ) .

By symmetry,

H0(T + N − λ) ⊆ H0(T + N − λ−N) = H0(T − λ) .
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Hence
H0(T − λ) = H0(T + N − λ) .

Choose λ ∈ isoσ(T ). Then H0(T − λ) = (T − λ)−m(0). Set r = mt. Since
x ∈ (T − λ)−m(0) implies that

(T + N − λ)mtx =
r∑

r−m+1

{
rCj(T − λ)r−jN j−t

}
N tx = 0 ,

it follows that

H0(T + N − λ) = (T − λ)−mt(0) ⊆ (T + N − λ)−mt(0) .

Since (T +N−λ)−q(0) ⊆ H0(T +N−λ) for all integers q ≥ 1, H0(T +N−λ) =
(T + N − λ)−r(0).

The following lemma relates H0(T + A− λ) to (T + A− λ)−r(0) at points
λ ∈ isoσ(T + A).

Lemma 4.5. If λ ∈ isoσ(T + A), then H0(T + A−λ) = (T + A−λ)−r(0)
for some positive integer r.

Proof. Since the subspace H0(A−µi) coincides with the range of the spec-
tral projection of A associated with µi [1, Theorem 3.74], the hypothesis
[T,A] = 0 implies that [Ti, Ai] = 0. Apparently, see the proof of Lemma 4.3,
(Ai − µi)ti = 0 for some integer ti ≥ 1. Let λ ∈ isoσ(T + A). Then either
λ − µi /∈ σ(Ti) or λ − µi ∈ isoσ(Ti), 1 ≤ i ≤ n. If λ − µi /∈ σ(Ti), then
the invertibility of Ti − (λ − µi) implies that {Ti − (λ − µi)} + {Ai − µi} is
invertible, and hence that

H0(Ti + Ai − λ) = H0((Ti + Ai − µi)− (λ− µi)) = {0}
= (Ti + Ai − λ)−ri(0)

for every positive integer ri and all 1 ≤ i ≤ n. Now let λ − µi ∈ isoσ(Ti);
then, by Lemma 4.4,

H0(Ti + Ai − λ) = H0((Ti + Ai − µi)− (λ− µi))

= ((Ti + Ai − µi)− (λ− µi))−ri(0) = (Ti + Ai − λ)−ri(0)

for some positive integer ri and all 1 ≤ i ≤ n. Let m = max{r1, r2, . . . , rn}.
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Then

H0(T + A− λ) =
n⊕

i=1

H0(Ti + Ai − λ)

=
n⊕

i=1

(Ti + Ai − λ)−ri(0) = (T + A− λ)−r(0) .

This completes the proof.

Theorem 4.6. f(T +A) satisfies Weyl’s theorem and f(T ∗+A∗) satisfies
a-Weyl’s theorem for every f ∈ H(σ(T + A)).

Proof. Each Ti, being the restriction of an operator with SVEP to an
invariant subspace, has SVEP; hence Ti + µi has SVEP for all 1 ≤ i ≤ n.
Since Ai−µi is nilpotent, and commutes with Ti+µi, Ti+Ai has SVEP for all
1 ≤ i ≤ n. Thus, the upper triangular operator matrix T +A =

⊕n
i=1(Ti+Ai)

has SVEP (and so satisfies Browder’s theorem). We claim that T +A is Kato
type at points λ ∈ isoσ(T + A). Indeed, if λ ∈ isoσ(T + A), then Lemma
4.5 implies the existence of a positive integer r such that H0(T + A − λ) =
(T + A− λ)−r(0). Hence, since (T + A− λ)rK(T + A− λ) = K(T + A− λ),
we have

X = H0(T + A− λ)⊕K(T + A− λ)

= (T + A− λ)−r(0)⊕K(T + A− λ)

⇒ X = (T + A− λ)−r(0)⊕ (T + A− λ)rX .

Evidently, λ is a pole of the resolvent of T + A; in particular, T + A is Kato
type at λ, and our claim is proved. Recall from [7, Theorem 3.3 and Theorem
3.6(ii)] that a sufficient condition for a Banach space operator with SVEP
to satisfy Weyl’s theorem, and its conjugate to satisfy a-Weyl’s theorem, is
that it is Kato type at the isolated points of its spectrum. Hence T + A
satisfies Weyl’s theorem, and T ∗ + A∗ satisfies a-Weyl’s theorem. Evidently,
T + A is isoloid and ind(T + A − λ) ≤ 0 for λ ∈ Φ±(T + A), [24, Theorem
1] applies and we conclude that f(T + A) satisfies Weyl’s theorem for every
f ∈ H(σ(T + A)). Since f(T + A) has SVEP, an argument similar to that in
the proof of Corollary 3.2 shows that f(T ∗ + A∗) satisfies a-Weyl’s theorem
for every f ∈ H(σ(T + A)).
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Polynomially loc(Gm) operators. An operator T ∈ B(X ) is (alge-

braically ) polynomially loc(Gm), T ∈ pl(Gm), if there exists a non-constant
polynomial q(·) such that q(T ) ∈ loc(Gm). Given a class C of operators in

B(X ) (thus, the elements of C are characterized by a property or a set of prop-
erties), it is known that if T is polynomially C, then T inherits Browder-Weyl
theorem type properties for a number of classes C (see [5] for some references).
We prove in the following that an analogue of Theorem 4.6 holds for operator
T ∈ pl(Gm).

Throughout the following A shall denote an algebraic operator which com-
mutes with T ∈ pl(Gm) (such that q(T ) ∈ loc(Gm)). The operators Ai and Ti,
1 ≤ i ≤ n, shall be defined as above. We start by proving some complementary
lemmas.

Lemma 4.7. T + A and Ti + Ai, 1 ≤ i ≤ n, have SVEP.

Proof. Since q(T ) has SVEP, [17, Proposition 3.3.9] implies that T has
SVEP. This, as in the proof of Theorem 4.6, implies that Ti + Ai has SVEP
for all 1 ≤ i ≤ n.

Lemma 4.7 implies, in particular, that T + A satisfies Browder’s theorem.

Lemma 4.8. Points λ ∈ isoσ(T ) are poles of the resolvent of T . In par-
ticular, T is isoloid.

Proof. The hypothesis λ ∈ isoσ(T ) implies that X = H0(T−λ)⊕K(T−λ).
Let T0 = T |H0(T−λ); then σ(T0) = {λ} and σ(q(T0)) = q(σ(T0)) = {q(λ)}.
Since q(T0) ∈ loc(Gm), and the isolated points of a loc(Gm) operator are
poles (of order m) of the resolvent of the operator, {q(T0)− q(λ)}m = 0. Let

{q(T0)− q(λ)}m = c(T0 − λ)mt
s∏

i=1

(T0 − λi)

for some numbers c, λ1, . . . , λs ∈ C. Since each T0 − λi is invertible, we
conclude that T0 − λ is nilpotent (of some order r ≤ mt). Hence

X = H0(T − λ)⊕K(T − λ) = (T − λ)−r(0)⊕K(T − λ)

⇒ X = (T − λ)−r(0)⊕ (T − λ)rX ,

i.e., λ is a pole (of order ≤ r) of the resolvent of T .
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Lemma 4.8 says that T is Kato type at points λ ∈ isoσ(T ) for operators
T ∈ pl(Gm). More is true, as the following lemma shows.

Lemma 4.9. T + A is Kato type at points λ ∈ isoσ(T + A).

Proof. Argue as in the proof of Lemma 4.4, Lemma 4.5 and Theorem
4.6. Remark that the part of the argument of the proof of Theorem 4.6
(also, the proof of Lemma 4.4 and Lemma 4.5) leading to the conclusion
T + A is Kato type at λ ∈ iso σ(T + A) depends only upon the property
that points λ ∈ isoσ(T ) of T ∈ loc(Gm) are poles, a property guaranteed by
Lemma 4.8.

Theorem 4.10. If A is an algebraic operator which commutes with an
operator T ∈ pl(Gm), then f(T + A) satisfies Weyl’s theorem and f(T ∗+ A∗)
satisfies a-Weyl’s theorem for every f ∈ H(σ(T + A)).

Proof. Since T + A has SVEP (Lemma 4.7) and is Kato type at points
λ ∈ iso σ(T + A), T + A satisfies Weyl’s theorem and (T + A)∗ satisfies a-
Weyl’s theorem [7, Theorem 3.3 and Theorem 3.6(ii)]. Furthermore, since
T + A is isoloid and ind(T + A− λ) ≤ 0 at λ ∈ Φ±(T + A), [24, Theorem 1]
and [1, Theorem 3.108] apply.
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