Compact Hausdorff Pseudoradial Spaces and their Pseudoradial Order*

Stefano Modena, Gino Tironi

Dipartimento di Matematica e Informatica - Università di Trieste,
Via Alfonso Valerio 12/1, 34127 Trieste, Italy
stefano.modena@sissa.it, tironi@units.it

Received December 21, 2010

Abstract: It is proved that there are compact Hausdorff spaces of any pseudoradial order up to ω₀ included.

Key words: Pseudoradial spaces, pseudoradial order, adjunction spaces.
AMS Subject Class. (2010): 54A20; 54A25, 54B17.

1. Introduction

Given an ordinal γ and a set X, a transfinite sequence in X of length γ is a map $S : γ \rightarrow X$. It is usually denoted $(x_\alpha)_{\alpha < \gamma}$. A transfinite sequence $(x_\alpha)_{\alpha < \gamma}$ in a topological space X converges to a point $x \in X$ (written $x_\alpha \rightarrow x$ or $\lim_{\alpha \rightarrow \gamma} x_\alpha = x$) provided that for each neighborhood U of x there is some $\overline{\sigma} < \gamma$ such that $\{ x_\alpha \mid \overline{\sigma} \leq \alpha < \gamma \} \subseteq U$.

A topological space X is called pseudoradial (see [5], [1] or [3]) provided that for each $A \subseteq X$, if A is not closed, then there are a point $x \in A \setminus A$ and a transfinite sequence $(x_\alpha)_{\alpha < \lambda}$ in A such that $x_\alpha \rightarrow x$.

Following [2] and [6], we define the pseudoradial closure of A in X as the set

$\hat{A} = \{ x \in X \mid \text{there is a transfinite sequence } (x_\alpha)_{\alpha < \lambda} \text{ in } A \text{ converging to } x \}.$

By transfinite recursion define

\begin{align*}
\hat{A}^{(0)} &= A; \\
\hat{A}^{(\alpha+1)} &= \left(\hat{A}^{(\alpha)} \right) \quad \text{for every ordinal } \alpha; \\
\hat{A}^{(\beta)} &= \bigcup_{\alpha < \beta} A^{(\alpha)} \quad \text{if } \beta \text{ is a limit ordinal.}
\end{align*}

*Research supported by University of Trieste within the Program: Finanziamento Ricerca d'Ateneo.
The pseudoradial order of a pseudoradial space X is the least ordinal number α such that for each $A \subseteq X$,

$$\widehat{A}^{(\alpha)} = \overline{A}.$$

The pseudoradial order of a pseudoradial space X is denoted by $\text{pro}(X)$.

In a previous article ([6]) we proved that there are normal ($T_4 + T_1$) pseudoradial spaces and compact T_1 ones of pseudoradial order given by any ordinal number. Here we exhibit the construction of Hausdorff compact pseudoradial spaces of any pseudoradial order less than or equal to ω_0.

2. The main construction

For each natural number $n \geq 1$, we construct a compact pseudoradial Hausdorff space G_n such that $\text{pro}(G_n) = n$.

For each $j = 0, \ldots, n - 1$, let $x(j), y(j)$ be ordinal numbers. For the sake of convenience $x(j)$ could also assume the value -1, so that we can use the notation $(-1, y(j))$ for denoting the segment of ordinals $[0, y(j)]$. Let $x = (x(0), \ldots, x(n-1)), y = (y(0), \ldots, y(n-1))$. We say that $x < y$ if and only if $x(j) < y(j)$ for each $j = 0, \ldots, n - 1$. If $x < y$, let

$$C(x, y) = (x(0), y(0)) \times \cdots \times (x(n-1), y(n-1))$$

be the n-dimensional cube with vertexes x, y, where each $(x(j), y(j))$ has the order topology and $C(x, y)$ has the product topology. If $x = (-1, \ldots, -1)$, we denote $C(x, y)$ by $C(y)$. If $x \leq x' < y' \leq y$, $C(x', y')$ is both an open and a closed subspace of $C(x, y)$. For each $j = 0, \ldots, n - 1$ we denote by

$$E_j = \{y(0)\} \times \cdots \times \{y(j-1)\} \times (x(j), y(j)) \times \{y(j+1)\} \times \cdots \times \{y(n-1)\}$$

the j-th edge of the cube $C(x, y)$ and

$$H_j = (x(0), y(0)) \times \cdots \times (x(j-1), y(j-1)) \times \{y(j)\} \times \cdots \times (x(n-1), y(n-1))$$

the j-th hyperface of the cube $C(x, y)$ (we are interested only in the edges and hyperfaces which y belongs to). Finally let us observe that if $z \in C(x, y)$, then $z < y$ if and only if $z \notin H_j$ for each $j = 0, \ldots, n - 1$.

Let $G_n = [0, \omega_0] \times [0, \omega_1] \times \cdots \times [0, \omega_{n-1}]$. G_n is a T_2 compact space since it is product of T_2 compact spaces. It was proved in [4] that the product of
two pseudoradial T_2 compact spaces is pseudoradial if one of them is radial (i.e. its pseudoradial order is 1). Since for each natural number k the segment of ordinals $[0, \omega_k]$ with the order topology is a compact T_2 radial space, it is easy to see that G_n is a pseudoradial space.

By the next three lemmas we prove that $\text{pro}(G_n) \leq n$, i.e. that for each subspace A of G_n, $\overline{A}^{(n)} = \overline{A}$.

Lemma 2.1. As earlier, let n be a natural number, $n \geq 1$ and let x, y be two n-tuples of ordinals, $x < y$. Let A be a subspace of $C(x, y)$. Assume that for each $j = 0, \ldots, n-1$, $A \cap H_j = \emptyset$. Then $y \notin \overline{A}$.

Proof. If $A = \emptyset$, the proof is trivial. Assume $A \neq \emptyset$. By transfinite recursion we determine an ordinal γ and a sequence $(z_\alpha)_{\alpha < \gamma}$ in A of length γ in the following way. Let $z_0 \in A$. Assume that we have defined $z_\alpha \in A$. Since for each $j = 0, \ldots, n-1$, $z_\alpha \notin H_j$, $z_\alpha < y$, so we can consider $C(z_\alpha, y)$. If $C(z_\alpha, y) \cap A = \emptyset$, let $\gamma = \alpha + 1$ and break the recursion. If not, choose $z_{\alpha+1} \in C(z_\alpha, y) \cap A$. Assume now that we have defined z_α for each $\alpha < \beta$, a limit ordinal, and for each $j = 0, \ldots, n-1$, let $\bar{z}_\beta(j) = \sup\{z_\alpha(j) \mid \alpha < \beta \}$. Let $\bar{z}_\beta = (\bar{z}_\beta(0), \ldots, \bar{z}_\beta(n-1))$. It is easy to prove that $\bar{z}_\beta = \lim_{\alpha \to \beta} z_\alpha$; then $\bar{z}_\beta \in A$, so $\bar{z}_\beta \notin H_0 \cup \cdots \cup H_{n-1}$, and so $\bar{z}_\beta < y$. Thus we can consider $C(\bar{z}_\beta, y)$. If $C(\bar{z}_\beta, y) \cap A = \emptyset$, let $\gamma = \beta$ and break the recursion. If not, choose $z_\beta \in C(\bar{z}_\beta, y) \cap A$. Then

$$U = \begin{cases} C(z_{\gamma-1}, y) & \text{if } \gamma \text{ is a successor ordinal} \\ C(\bar{z}_\gamma, y) & \text{if } \gamma \text{ is a limit ordinal} \end{cases}$$

is a neighborhood of y in which there are no points of A, so $y \notin \overline{A}$. \hfill \blacksquare

Lemma 2.2. Let x, y be two n-tuples of ordinals. Let A be a subspace of $C(x, y)$. Assume that for each $j = 0, \ldots, n-1$, $A^{(n-1)} \cap E_j = \emptyset$. Then $y \notin \overline{A}$.

Proof. By induction on n. If $n = 1$ the proof is trivial. If $n = 2$, then $E_0 = H_0$ and $E_1 = H_1$, so by Lemma 2.1 $y \notin \overline{A}$.

Now let $n \geq 3$ and assume that the lemma is proved for $n-1$ and let us prove it for n. First let us observe that for each $j = 0, \ldots, n-1$, H_j is homeomorphic to an $(n-1)$-dimensional cube, whose edges are the E_k, $k \neq j$. Furthermore E_j, H_j are closed subspaces of $C(x, y)$ and so we can use the closure and pseudoradial closure operators in $C(x, y)$, in E_j and in H_j without ambiguity.
Now, for each \(j = 0, \ldots, n - 1 \), let \(B_j = \hat{A} \cap H_j \). First we prove that for each \(j = 0, \ldots, n - 1 \) and for each \(k \neq j \), \(\overline{B}_j^{(n-2)} \cap E_k = \emptyset \). If not, \(\emptyset \neq \overline{B}_j^{(n-2)} \cap E_k \subseteq \widehat{A}^{(n-1)} \cap \widehat{H}_j^{(n-2)} \cap E_k = \hat{A}^{(n-1)} \cap H_j \cap E_k \), but this contradicts the hypothesis. So for each \(j = 0, \ldots, n - 1 \) the hyperface \(H_j \) of \(C(x, y) \) is homeomorphic to an \((n-1)\)-dimensional hypercube such that in each of its edges there are no points of \(B_j^{(n-2)} \). So by inductive assumption, \(y \in \hat{A} \). Thus for each \(j = 0, \ldots, n - 1 \), and for each \(k \neq j \), there is an ordinal \(w_j(k) < y(k) \) such that in

\[
(w_j(0), y(0)) \times \cdots \times (w_j(j - 1), y(j - 1)) \times \{y(j)\} \times \\
\times (w_j(j + 1), y(j + 1)) \times \cdots \times (w_j(n - 1), y(n - 1))
\]

there are no points of \(B_j = \hat{A} \cap H_j \). Let

\[
w(0) = \max\{w_j(0) \mid j = 0, \ldots, n - 1\} < y(0) \\
\ldots \\
w(n - 1) = \max\{w_j(n - 1) \mid j = 0, \ldots, n - 1\} < y(n - 1)
\]

and let \(w = (w(0), \ldots, w(n - 1)) \). Thus \(C(w, y) \) is an \(n \)-dimensional hypercube such that in each of its hyperfaces there are no points of \(\hat{A} \). So by Lemma 2.1 \(y \notin \overline{A} \).

\[\text{Łemma 2.3. Let } y \text{ be an } n\text{-tuple of ordinals. Let } A \text{ be a subspace of } C(y) \text{ and } y \in \overline{A}. \text{ Then } y \in \hat{A}.\]

\[\text{Proof. By contradiction assume that } y \notin \hat{A}. \text{ Then there is } x = (x(0), \ldots, x(n - 1)) \text{ such that in each edge } E_j \text{ of the cube } C(x, y) \text{ there are no points of } \hat{A}^{(n-1)}. \text{ By Lemma 2.2, } y \notin A \cap C(x, y) \text{ and so } y \notin \overline{A}.\]

By the next lemma we prove that \(\text{pro}(G_n) \geq n \), i.e. that there is a subspace \(A \) of \(G_n \) such that \(\hat{A}(k) \subseteq \overline{A} \) for each \(k = 0, \ldots, n - 1 \).

\[\text{Lemema 2.4. Let } A = [0, \omega_0) \times \cdots \times [0, \omega_{n-1}) \subseteq G_n. \text{ Then for each } k = 0, \ldots, n,
\]

\[\hat{A}(k) = \{(x(0), \ldots, x(n - 1)) \mid x(j) = \omega_j \text{ for at most } k \text{ indices}\}.
\]

\[\text{Proof. By induction on } k. \text{ For } k = 0 \text{ the proof is trivial. Assume that the lemma is proved for } k - 1 \text{ and let us prove it for } k.\]
Let $x \in \widehat{A}(k)$. Assume $x(j) = \omega_j$ for more than k indices. We can assume without restriction $x = (\omega_0, \ldots, \omega_{k-1}, \omega_k, x(k+1), \ldots, x(n-1))$. Since $x \in \widehat{A}(k)$, there is a sequence $(x_\alpha)_{\alpha < \lambda}$ of length λ in $\widehat{A}(k-1)$ such that $x_\alpha \to x$.

First assume $\lambda \leq \omega_{k-1}$. Let $\overline{\gamma} = \sup\{x_\alpha(k) \mid \alpha < \lambda\}$. Since $\lambda \leq \omega_{k-1}$, then $\overline{\gamma}$ is strictly less than ω_k and so x_α cannot converge to x. Now assume $\lambda \geq \omega_k$. Let $h \in \{0, \ldots, k-1\}$. Since $x_\alpha \to x$, for each $\gamma < \omega_k$ there is $\alpha(h, \gamma) < \lambda$ such that for each $\alpha > \alpha(h, \gamma)$, $x_\alpha(h) > \gamma$. Let $\overline{\alpha}_h = \sup\{\alpha(h, \gamma) \mid \gamma < \omega_h\}$ and $\overline{\alpha} = \max\{\alpha_h \mid h = 0, \ldots, k-1\}$. Since $\lambda \geq \omega_k$, $\overline{\alpha}_h < \omega_k$ for each h and so $\overline{\alpha} < \omega_k$. Then for each $\alpha > \overline{\alpha}$, $x_\alpha(h) = \omega_h$ for each $h = 0, \ldots, k-1$. Then by inductive assumption $x_\alpha \notin \widehat{A}(k-1)$, a contradiction.

Let $x = (x(0), \ldots, x(n-1))$ such that $x(j) = \omega_j$ for at most k indices.

If $x(j) = \omega_j$ for at most $k - 1$ indices, by inductive assumption $x \in \widehat{A}(k-1)$.

So assume $x(j) = \omega_j$ for exactly k indices. We can assume without restriction that $x = (\omega_0, \ldots, \omega_{k-1}, x(k), \ldots, x(n-1))$ and $x(k) = \omega_k, \ldots, x(n-1) = \omega_{n-1}$.

For each $\alpha < \omega_{k-1}$, let $x_\alpha = (\omega_0, \ldots, \omega_{k-1}, \alpha, x(k), \ldots, x(n-1))$. By inductive assumption $x_\alpha \in \widehat{A}(k-1)$. Clearly $x_\alpha \to x$ and so $x \in \widehat{A}(k)$.

Theorem 2.5. $G_n = [0, \omega_0] \times [0, \omega_1] \times \cdots \times [0, \omega_{n-1}]$ is a compact pseudoradial Hausdorff space and pro(G_n) = n.

Proof. Clearly G_n is a T_2 compact space since it is product of T_2 compact spaces. We have already observed that G_n is a pseudoradial space. In order to prove that pro(G_n) = n it suffices to prove that:

(i) for each $A \subseteq G_n$, $\widehat{A}(n) = \overline{A}$;

(ii) there exists $A \subseteq G_n$ such that for each $k < n$, $\widehat{A}(k) \subseteq \overline{A}$.

Let us prove the first claim. Let $A \subseteq G_n$. Let $y \in \overline{A}$. Since $C(y)$ is both an open and a closed subspace of G_n, $x \in \overline{A} \cap C(y)$. Thus, by Lemma 2.3, $x \in A \cap C(y)$. Therefore, $x \in A \cap C(y)$ and so $x \in \widehat{A}(n)$.

Let us prove the second claim. Let A be as in Lemma 2.4 and let $x = (\omega_0, \ldots, \omega_{n-1})$. Clearly $x \in \overline{A}$, but by Lemma 2.4, $x \notin \widehat{A}(k)$, for each $k = 0, \ldots, n-1$.

3. A space of order ω_0

Let X be the disjoint topological sum of the spaces G_n, $n < \omega_0$, constructed in the previous section. Let G_ω be the one-point compactification of X, i.e. $G_\omega = X \cup \{\infty\}$.
Remark 3.1. Let us observe that:

(i) \(\infty \notin X \);
(ii) a basic neighborhood of \(\infty \) has the form \(G_\omega \setminus K \), where \(K \) is a compact subspace of \(X \);
(iii) if \(K \) is a compact subspace of \(X \), then there is \(n < \omega_0 \) such that \(K \subseteq \bigcup_{1 \leq k \leq n} G_k \).

Theorem 3.2. \(G_\omega \) is a compact Hausdorff pseudoradial space and its pseudoradial order is \(\omega_0 \).

Proof. Clearly \(G_\omega \) is a compact Hausdorff space. In order to prove that \(G_\omega \) is pseudoradial and \(\text{pro}(G_\omega) = \omega_0 \) it suffices to prove that:

(i) for each \(A \subseteq G_\omega \), \(\widehat{A}(\omega_0) = \overline{A} \);
(ii) for each \(n < \omega_0 \), there exists \(A \subseteq G_\omega \) such that \(\widehat{A}(n) \not\subseteq \overline{A} \).

Let us prove the first claim. Let \(A \subseteq G_\omega \) and let \(x \in \overline{A} \setminus A \). If \(x = \infty \), then for each \(n < \omega_0 \),

\[
U_n = (G_\omega \setminus \bigcup_{1 \leq k \leq n} G_k)
\]

is a neighborhood of \(\infty \) and so there is \(x_n \in A \cap U_n \). It follows immediately from Remark 3.1 that \(x_n \to \infty \). So \(\infty \in \overline{A} \subseteq \widehat{A}(\omega_0) \). If \(x \neq \infty \), then there is \(n < \omega_0 \) such that \(x \in G_n \). Since \(G_n \) is a compact open subspace of \(G_\omega \) and \(\text{pro}(G_n) = n \), then \(x \in \widehat{A}(n) \subseteq \widehat{A}(\omega_0) \).

The second claim is an easy consequence of the fact that for each \(n < \omega_0 \) the space \(G_n \) is a compact open subspace of \(G_\omega \) and its pseudoradial order is \(n \).

References
