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Transfer Operators on Complex Hyperbolic Spaces

Abdelhamid Boussejra, Tahani Taoufiq

Department of Mathematics, Faculty of Sciences, University Ibn Tofail,
Kenitra, Morocco, a.boussejra@gmail.com.

Department of Mathematics, University of Sciences and Technics,
Lille 1, France, Tahani@math.univ-lille1.fr

Presented by Mostafa Mbekhta Received October 12, 2012

Abstract : Let Bn be the unit ball in the n-dimensional complex space and let ∆ be the
Bergman Laplacian on it. For λ ∈ C such that |ℜ(iλ)| < n we give explicitly the transfer
operator from the space of holomorphic functions Bn onto an eigenspace E+

λ (Bn) of ∆. This
answers a question raised by Eymard in [2]. As application, for λ = −iη with 0 < η < n,
we get that the classical Hardy space H2(Bn) is isometrically isomorphic to the space

H2
λ(Bn) =

{
F ∈ E+

η (Bn) : sup
0<r<1

(
1− r2

) η−n
2

[∫
∂Bn

|F (rθ)|2dθ
] 1

2

< ∞

}
.

Consequently H2
λ(Bn) is a Banach space.
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1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk of the complex plane C and

let ∆ = 4(1 − |z|2)2 ∂2

∂z∂z be the hyperbolic laplacian on D. For λ ∈ C and
f ∈ A′(∂D) the space of hyperfunctions on the circle ∂D = {z ∈ C : |z| = 1},
we define the Poisson transform by

Pλf(z) =
1

2π

∫ 2π

0

(
1− |z|2

|1− ze−iθ|2

) iλ+1
2

f(eiθ)dθ. (1.1)

Then it is well known that if λ satisfies iλ+1
2 /∈ Z−, then Pλ is an isomorphism

from A′(∂D) onto the eigenspace Eλ(D) of ∆ associated to the eigenvenvalue
−(λ2 + 1). In particular, for λ = −i, the space E−i(D) consists of harmonic
functions on D.

Therefore one can define formally an operator τλ such that the following
diagram
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A
′
(∂D)

P−i

yysssssssss
Pλ

$$JJJJJJJJJ

E−i(D) τλ
// Eλ(D)

is commutative.
In [2] P. Eymard gave the operator τλ explicitly. More precisely we have

Theorem 1.1. ([2]) Let λ ∈ C such that |ℜ(iλ)| < 1. For F ∈ E−i(D),
set

τλF (z) =
1

Γ
(
iλ+1
2

)
Γ
(
1−iλ
2

) ∫ 1

0
F (tz)

[
t(1− |z|2)

(1− t)(1− t|z|2)

] iλ+1
2 dt

t
. (1.2)

Then the operator τλ is an isomorphism from E−i(D) onto Eλ(D).

As it is known the Poincaré disk D is a one dimensional (the unique)
Riemannian symetric space of the noncompact type and the above Poisson
transform (1.1) can be defined for general Riemannian symmetric space X.

For f in A′(B) the space of all hyperfunctions on the Furstenberg boundary
B define the Poisson transform Pλ by

Pλf(x) =

∫
B
Pλ(x, b)f(b)db, (1.3)

where Pλ(x, b) = e(iλ+ρ)A(x,b) is the Poisson kernel of X, cf [3] for more details.
In the case of a Riemannian symmetric space of rank one, Helgason [3]

showed that Pλ is an isomorphism from A′(B) onto an eigenspace Eλ(X)
of the Laplace-Beltrami operator ∆ for λ running some subset Λ of C. In
particular for λ = −iρ, the eigenspace Eρ(X) consists of harmonic functions
with respect to ∆.

Henceforth, it is natural to look as in the case of the unit disk D for an
explicit expression of the operator τλ from the space of harmonic functions
E−iρ(X) onto the eigenspace Eλ(X), when λ ∈ Λ.

The operator τλ -called the transfer operator by Eymard- has been given
explicitly in the case of n-dimensional real hyperbolic space by Sami [6].

One of the difficulties we run into when trying to extend Eymard [2] and
Sami [6] results to the case of the complex hyperbolic space is, in our point of
view, the relative complexity of the harmonic functions in the complex case
rather than in the real one.
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A natural question raised by Eymard [2] is, by which class of functions
might be the harmonic functions replaced. In this paper, we propose the class
of holomorphic functions as substitute.

The organization of this paper is as follows. In Section 2 we recall some re-
sults on the Poisson transform on the complex hyperbolic space. In Section 3
we state and prove the main result of our paper. In Section 4 some applica-
tions of our result is given. In particular we show that the operator τλ is a
topological isomorphism from the classical Hilbert space H2 square integrable
holomorphic functions on the complex unit ball onto a class of eigenfunctions
of ∆.

2. The Poisson transform

Let Bn = {z ∈ Cn : |z| < 1} be the bounded realization of the n-
dimensional complex hyperbolic space and let ∂Bn = {ω ∈ Cn : |ω| = 1} be
the unit sphere of the n-dimensional complex space Cn with the normalized
measure dσ on it. The Laplace-Beltrami operator of the complex hyperbolic
space Bn is given by

∆ =

n∑
i,j=1

(δij − ziz̄j)
∂2

∂ziz̄j
,

where δij denotes the Kronecker symbol. For λ a complex number, let Eλ(Bn)
be the space of all eigenfunctions of ∆ in Bn with eigenvalue −(λ + n)2.
Let A′(∂Bn) be the space of all hyperfunctions on ∂Bn. Then the Poisson
transform is the map

Pλ : A′(∂Bn) −→ Eλ(Bn),

defined by

Pλf(z) =

∫
∂Bn

(
1− |z|2

|1− zω̄|2

) iλ+n
2

f(ω)dσ(ω),

where zω =
∑n

j=1 zjωj .

Theorem 2.1. ([3]) Let λ ∈ C such that iλ+n
2 /∈ Z−. Then Pλ is an

isomorphism from A′(∂Bn) onto Eλ(Bn).

Now, let H(p, q) denote the space of restrictions to ∂Bn of harmonic poly-
nomials hpq(z, z) which are homogeneous of degree p in z and degree q in z.

Then we have L2(S) = ⊕p,q≥0H(p, q). We denote by hjpq (1 ≤ j ≤ d(p, q))
an orthonormal basis of H(p, q). Note that H(p, 0) consists of holomorphic
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polynomials. To each f ∈ A′(∂Bn) we associate its expansion into spherical
harmonics hjpq

f =

+∞∑
p,q≥0

d(p,q)∑
j=1

apq,jh
j
pq,

with
+∞∑
p,q=0

d(p,q)∑
j=1

|apq,j |2rp+q < ∞,

for every r ∈ [0, 1[.
Below, we recall a result on the action of the Poisson transform on H(p, q)

which will be useful in the sequel.

Proposition 2.1. ([3]) Let λ ∈ C and let f in H(p, q). Then we have

Pλf(z) = ϕλ,p,q(|z|)f
(

z

|z|

)
,

where ϕλ,p,q(|z|) is the generalized spherical function associated to the complex
hyperbolic space Bn given by:

ϕλ,p,q(|z|) =

(
iλ+n
2

)
p

(
iλ+n
2

)
q

(n)p+q
|z|p+q

(
1− |z|2

) iλ+n
2

2F1

(
iλ+ n

2
+ p,

iλ+ n

2
+ q, p+ q + n; |z|2

)
.

In above (a)k = a(a + 1) · · · (a + k − 1) is the Pochammer symbol and

2F1(a, b, c;x) is the classical Gauss hypergeometric function, see [4].

3. The Transfer formula

In this section we state and prove the main result of this paper. For this,
let A

′
+(∂Bn) denote the subspace of A′(∂Bn) consisting of all hyperfunctions

f such that

f =

+∞∑
p=0

d(p,0)∑
j=1

ap,jh
j
p0.

For f in A
′
(∂Bn), we define the Cauchy integral of f by

Cf(z) =
∫
∂Bn

(1− zω̄)−nf(ω)dσ(ω).
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Let O(Bn) be the space of all holomorphic functions on the unit ball Bn.
Then it is well known that the Cauchy transform C is an isomorphism from
A

′
+(∂Bn) onto O(Bn).

Next, let E+
λ (B

n) = Pλ(A
′
+(∂Bn)). From Proposition 2.1, we get

Corollary 3.1. Let λ ∈ C and let F be a C-valued function on Bn.Then
we have F ∈ E+

λ (B
n) if and only if there exists a sequence of complex numbers

apj such that

F (z) =
+∞∑
p=0

d(p,0)∑
j=1

apjϕλ,p,0(|z|)hjp0(z), (3.1)

in C∞(Bn).

From now on we will denote the function ϕλ,p,0 by ϕλ,p.

Now, we can state the main result of this paper. By Γ(·) we denote the
usual Euler Gamma function.

Theorem 3.1. Let λ be a complex number such that |ℜ(iλ)| < n Then,
the operator τλ given by

[τλF ](z) =
Γ(n)

Γ
(
iλ+n
2

)
Γ
(
n−iλ
2

) ∫ 1

0
F (tz)

[
t(1− |z|2)

(1− t)(1− t|z|2)

] iλ+n
2

(1− t)n−1dt

t
.

is an isomorphism from O(Bn) onto the eigenspace E+
λ (B

n). Moreover the
following diagram

A
′
+(∂Bn)

C

yytttttttttt
Pλ

%%KKKKKKKKKK

O(Bn) τλ
// E+

λ (B
n)

is commutative.

Proof. Let F be a holomorphic function on Bn. Then

F (rθ) =
+∞∑
p=0

d(p,0)∑
j=1

apjr
phjp0(θ),
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in C∞([0, 1[×∂Bn). Moreover F = Cf where f ∈ A
′
+(Bn) is given by

f =

+∞∑
p=0

d(p,0)∑
j=1

apjh
j
p0.

Now we have

[τλF ](rθ) =
Γ(n)

Γ
(
iλ+n
2

)
Γ
(
n−iλ
2

) ∫ 1

0

∑
p≥0

d(p,0)∑
j=1

apjh
j
p,0(θ)(tr)

p

[
t(1− r2)

(1− t)(1− tr2)

] iλ+n
2

(1− t)n−1dt

t
.

(3.2)

Since for each fixed θ ∈ ∂Bn and r ∈ [0, 1[, the series
∑

p≥0(tr)
pfp,0(θ) con-

verges uniformly in t ∈ [0, 1[ we can reverse the order of sum and integration
in (3.2) to get

[τλF ](rθ) =
Γ(n)

Γ
(
iλ+n
2

)
Γ
(
n−iλ
2

) ∑
p≥0

d(p,0)∑
j=1

apjh
j
p,0

∫ 1

0
(tr)p

[
t(1− r2)

(1− t)(1− tr2)

] iλ+n
2

(1− t)n−1dt

t
.

(3.3)

Next, since |ℜ(iλ)| < n, we can use the following integral representation
of the hypergeometric function (see [4])

F (a, b, c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
sa−1(1− s)c−a−1(1− sx)−bdt, (3.4)

to see that

Γ(n)

Γ
(
iλ+n
2

)
Γ
(
n−iλ
2

) ∫ 1

0
(tr)p

[
t(1− r2)

(1− t)(1− tr2)

] iλ+n
2

(1− t)n−1dt

t
= ϕλ,p(r),

from which we obtain

[τλF ](rθ) =

+∞∑
p=0

ϕλ,p(r)

d(p,0)∑
j=1

ap,jh
j
p0(θ),

and since this later sum is none other than Pλf , the result follows. This
finishes the proof of Theorem 3.1.
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4. Application

In this section we use the explicit expression of the transfer operator τλ to
derive some growth condition on the class of eigenfunctions in E+

λ (B
n). For

this, let us fix some notations. As usual Lp(∂Bn) is the space of measurable
complex function f on ∂Bn such that

∥f∥p =
(∫

∂Bn

|f(θ)|pdσ(θ)
) 1

p

< ∞.

For a C-valued function F on Bn and 0 < r < 1, we let Fr denote the function
defined on ∂Bn by Fr(θ) = F (rθ). Finally, we denote by Kλ(t, r) (r = |z|),
the kernel of the operator τλ given by:

Kλ(t, r) =
Γ(n)

Γ
(
iλ+n
2

)
Γ
(
n−iλ
2

) [ t(1− r2)

(1− t)(1− tr2)

] iλ+n
2 (1− t)n−1

t
.

We first establish a Lemma which will be needed in the sequel.

Lemma 4.1. Let λ ∈ C such that 0 < ℜ(iλ) < n. Then we have

sup
o<r<1

(
(1− r2)

−
(

n−ℜ(iλ)
2

) ∫ 1

0
|Kλ(t, r)|dt

)
≤

Γ
(
ℜ(iλ)

)
Γ(n)Γ

(n−ℜ(iλ)
2

)∣∣Γ(n+iλ
2

)
Γ
(
n−iλ
2

)∣∣Γ(n+ℜ(iλ)
2

) .
Proof. We have∫ 1

0
Kλ(t, r)|dt =

Γ(n)∣∣Γ(n+iλ
2

)
Γ
(
n−iλ
2

)∣∣(1− r2)
n+ℜ(iλ)

2∫ 1

0
t
n+ℜ(iλ)

2
−1(1− t)−

n+ℜ(iλ)
2 (1− tr2)

n−ℜ(iλ)
2

−1dt.

By using the formula (3.1) we get∫ 1

0
|Kλ(t, r)|dt =

Γ
(n+ℜ(iλ)

2

)
Γ
(n−ℜ(iλ)

2

)∣∣Γ(n+iλ
2

)
Γ
(
n−iλ
2

)∣∣ (1− r2)
n+ℜ(iλ)

2

F

(
n+ ℜ(iλ)

2
,
n+ ℜ(iλ)

2
, n; r2

)
.

Next, use the following identity on hypergeometric functions

F (a, b, c;x) = (1− x)c−a−bF (c− a, c− b, c;x),
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to rewrite the above equality as∫ 1

0
|Kλ(t, r)|dt =

Γ
(n+ℜ(iλ)

2

)
Γ
(n−ℜ(iλ)

2

)∣∣Γ(n+iλ
2

)
Γ
(
n−iλ
2

)∣∣ (1− r2)
n−ℜ(iλ)

2

F

(
n−ℜ(iλ)

2
,
n−ℜ(iλ)

2
, n; r2

)
.

We have

F

(
n−ℜ(iλ)

2
,
n−ℜ(iλ)

2
, n; r2

)
≤ F

(
n−ℜ(iλ)

2
,
n−ℜ(iλ)

2
, n; 1

)
,

by ℜ(iλ) < n. Next since ℜ(iλ) > 0 we can use the following well known
identity (for ℜ(c− a− b) > 0)

F (a, b, c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

to obtain∫ 1

0
|Kλ(t, r)|dt ≤ (1− r2)

n−ℜ(iλ)
2

Γ
(
ℜ(iλ)

)
Γ(n)Γ

(n−ℜ(iλ)
2

)∣∣Γ(n+iλ
2

)
Γ
(
n−iλ
2

)∣∣Γ(n+ℜ(iλ)
2

) ,
and the lemma follows.

Proposition 4.1. Let p ∈]1,+∞[, λ a complex number such that 0 <
ℜ(iλ) < n and let F be a holomorphic function on Bn. Then we have:(∫

∂Bn

|τλF (rθ)|pdσ(θ)
) 1

p

≤ (1−r2)
n−ℜ(iλ)

2
Γ
(
ℜ(iλ)

)
Γ(n)Γ

(n−ℜ(iλ)
2

)∣∣Γ(n+iλ
2

)
Γ
(
n−iλ
2

)∣∣Γ(n+ℜ(iλ)
2

)∥Fr∥p,

for every r ∈ [0, 1[.

Proof. Let F be a holomorphic function on Bn and let ϕ ∈ Lq(∂Bn), with
1
q +

1
p = 1. We have:∣∣∣∣∫

∂Bn

τλF (rθ)ϕ(θ)dσ(θ)

∣∣∣∣ = ∣∣∣∣∫
∂Bn

[∫ 1

0
Kλ(t, r)F (trθ)dt

]
ϕ(θ)dσ(θ)

∣∣∣∣
By using the Fubini Theorem we get∣∣∣∣∫

∂Bn

τλF (rθ)ϕ(θ)dσ(θ)

∣∣∣∣ = ∣∣∣∣∫ 1

0

[∫
∂Bn

F (trθ)ϕ(θ)dσ(θ)

]
Kλ(t, r)dt

∣∣∣∣ ,
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We have ∣∣∣∣∫
∂Bn

F (trθ)ϕ(θ)dθ

∣∣∣∣ ≤ ∥Ftr∥p∥ϕ∥q,

where for s ∈ [0, 1[, ∥Fs∥p =
(∫

∂Bn |F (sθ)|pdσ(θ)
) 1

p .
Thus ∣∣∣∣∫

∂Bn

τλF (rθ)ϕ(θ)dσ(θ)

∣∣∣∣ ≤ (∫ 1

0
∥Ftr∥p|Kλ(t, r)|dt

)
∥ϕ∥q.

Since for F a holomorphic function on Bn, the function s → ∥Fs∥p is increasing
in s ∈ [0, 1[ we obtain∣∣∣∣∫

∂Bn

τλF (rθ)ϕ(θ)dσ(θ)

∣∣∣∣ ≤ ∥ϕ∥q∥Fr∥p
∫ 1

0
|Kλ(t, r)|dt.

Taking the supremum over all ϕ ∈ Lq(∂Bn) with∥ϕ∥q ≤ 1, we get∣∣∣∣∫
∂Bn

τλF (rθ)ϕ(θ)dσ(θ)

∣∣∣∣ ≤ ∥Fr∥p
∫ 1

0
|Kλ(t, r)|dt.

Next, use the estimate in Lemma 4.1 to get the right hand side estimate in
Proposition 4.1 and the proof is finished.

Let p be a real number with p > 1 and let

Hp(Bn) =
{
F ∈ O(Bn) : ∥F∥p = sup

0<r<1
∥Fr∥p < ∞

}
,

be the classical Hardy space on the unit complex ball of Cn. Then using
the above proposition we get the following characterization of eigenfunctions
Ψ ∈ E+

λ (B
n) which are transform by τλ of functions on the Hardy space

Hp(Bn). More precisely

Corollary 4.1. Let λ ∈ C such that 0 < ℜ(iλ) < n and let Ψ ∈ E+
λ B

n)
such that Ψ = τλF with F ∈ Hp(Bn). Then the eigenfunction Ψ satisfies the
following growth condition of Hardy type:

sup
0<r<1

(1− r2)−
(

n−ℜ(iλ)
2

) [∫
∂Bn

|Ψ(rθ)|pdσ(θ)
] 1

p

< ∞.

Moreover we have

sup
0<r<1

(1− r2)−
(

n−ℜ(iλ)
2

) [∫
∂Bn

|Ψ(rθ)|pdσ(θ)
] 1

p

≤
Γ
(
ℜ(iλ)

)
Γ(n)Γ

(n−ℜ(iλ)
2

)∣∣Γ(n+iλ
2

)
Γ
(
n−iλ
2

)∣∣Γ(n+ℜ(iλ)
2

)∥F∥p.
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Now we will prove the converse of the above result in the case of p = 2.
For this we introduce, for λ ∈ C, the following Hardy type space H2

λ(Bn) for
eigenfunctions of the Laplacian ∆ of the complex hyperbolic space:

H2
λ(Bn) =

{
Ψ ∈ E+

λ (B
n) :

∥Ψ∥λ,2 = sup
0<r<1

(1− r2)−
(

n−ℜ(iλ)
2

) [∫
∂Bn

|Ψ(rθ)|2dσ(θ)
] 1

2

< ∞
}
.

Theorem 4.1. Let λ ∈ C such that 0 < ℜ(iλ) < n. Then the transfer
operator τλ is a topological isomorphism from the HardyH2(Bn) ontoH2

λ(Bn).
Moreover we have∣∣∣∣∣Γ(n)Γ(iλ)Γ2

(
iλ+n
2

) ∣∣∣∣∣ ∥F∥2 ≤ ∥τλF∥λ,2 ≤
Γ
(
ℜ(iλ)

)
Γ(n)Γ

(n−ℜ(iλ)
2

)∣∣Γ(n+iλ
2

)
Γ
(
n−iλ
2

)∣∣Γ(n+ℜ(iλ)
2

)∥F∥2. (4.1)

For the proof of the above theorem we will need the following result giving
the asymptotic behavior of the generalized spherical function ϕλ,p(r) as r goes
to 1−.

Lemma 4.2. Let λ ∈ C such that ℜ(iλ) > 0. Then we have

ϕλ,p(r) ∼
Γ(n)Γ(iλ)

Γ2
(
n+iλ
2

) (1− r2)
n−iλ

2 ,

as r goes to 1−, uniformly in p.

We postpone the proof of this lemma to the end of this section.

Proof of Theorem 4.1. The necessary condition follows from Corollary 4.1.
To prove the sufficiency condition, let Ψ ∈ H2

λ(Bn). Then, by Corollary 3.1,
there exists a sequence of complex numbers apj such that

Ψ(rθ) =

+∞∑
p=0

d(p,0)∑
j=1

ϕλ,p(r)apjh
j
p,0(θ).

Since ∥Ψ∥λ,2 < ∞,we have

(1− r2)−
(

n−ℜ(iλ)
2

) +∞∑
p=0

d(p,0)∑
j=1

|apj |2|ϕλ,p(r)|2
 1

2

≤ ∥Ψ∥λ,2 < ∞,
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for every r ∈ [0, 1[. Next, using the uniform asymptotic behavior in p of
ϕλ,p(r), given by Lemma 4.2, we obtain

∣∣∣∣∣Γ(n)Γ(iλ)Γ2
(
n+iλ
2

) ∣∣∣∣∣
+∞∑
p=0

d(p,o)∑
j=1

|apj |2
 1

2

≤ ∥Ψ∥λ,2 < ∞.

Therefore the sum
∑+∞

p=0

∑d(p,o)
j=1 apjh

j
p0 defines a function f in the space

L2(∂Bn). In fact f is in the Hardy space H2(∂Bn) on the boundary ∂Bn,
since

H2(∂Bn) =

+∞⊕
p=0

H(p, 0).

Next let F = Cf . Then F is in the Hardy space H2(Bn), since the Cauchy
operator maps H2(∂Bn) to the Hardy space H2((Bn), see Rudin [5].

We have

τλF (rθ) =

∫ 1

0

+∞∑
p=0

d(p,o)∑
j=1

apjh
j
p0(θ)(tr)

p(θ)Kλ(t, r)dt.

Thus

τλF (rθ) =
+∞∑
p=0

d(p,o)∑
j=1

apjh
j
p0(θ)

∫ 1

0
(tr)pKλ(t, r)dt,

by the uniform convergence in t∈ [0, 1[ of the series
∑+∞

p=0

∑d(p,o)
j=1 apjh

j
p0(θ)(tr)

p.

Now, recall that ∫
∂Bn

(tr)pKλ(t, r)dt = ϕλ,p(r),

from which we obtain

[τλF ](rθ) =
+∞∑
p=0

d(p,o)∑
j=1

apjϕλ,p(r)h
j
p0(θ).

Therefore τλF = Ψ and the proof of Theorem 4.1 is finished.

Letting λ = −iη with 0 < η < n, in the above theorem we get



124 a. boussejra, t. taoufiq

Corollary 4.2. Let η ∈ R such that 0 < η < n. Then the transfer
operator τ−iη is a topological isomorphism from the Hardy space H2(∂Bn)
onto H2

−iη(Bn), with ∣∣∣∣∣Γ(n)Γ(η)Γ
(n+η

2

) ∣∣∣∣∣ ∥F∥2 = ∥τ−iηF∥2,λ.

Consequently H2
λ(Bn) is a Banach space.

Now we give the proof of Lemma 4.2 giving the asymptotic behaviour of
the generalized spherical function.

Proof of Lemma 4.2. Recall that

ϕλ,p(r) =

(
iλ+n
2

)
p

(n)p
rp
(
1− r2

) iλ+n
2 F

(
iλ+ n

2
+ p,

iλ+ n

2
, p+ n; r2

)
.

Then using the following identity on hypergeometric functions (see [4]):

F (a, b, c;x) =
Γ(c)Γ(c− b− a)

Γ(c− a)Γ(c− b)
F (a, b, a+ b− c+ 1; 1− x)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− x)c−b−a

F (c− a, c− b, c− a− b+ 1; 1− x),

we can rewrite ϕλ,p as

ϕλ,p(r) =

(
iλ+n
2

)
p

(n)p
rp

Γ(n+ p)Γ(−iλ)

Γ
(
n−iλ
2 + p

)
Γ
(
n−iλ
2

)(1− r2)
iλ+n

2

F

(
n+ iλ

2
,
n+ iλ

2
+ p, iλ+ 1; 1− r2

)
+

Γ(iλ)Γ(n)

Γ2
(
iλ+n
2

) (1− r2
)n−iλ

2

F

(
n− iλ

2
,
n− iλ

2
+ p,−iλ+ 1; 1− r2

)
.

and the result follows.
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Remark 4.1. Notice that along the lines of the above proof we can estab-
lished the following result which is interesting in its own:

Let λ ∈ C such that ℜ(iλ) > 0 and let Ψ ∈ Eλ(Bn). Then Ψ has an
L2-Poisson integral representation over the boundary ∂Bn if and only if its
satisfies the following growth condition

sup
0<r<1

(
1− r2

)−(n−ℜ(iλ)
2

) [∫
∂Bn

|Ψ(rθ)|2dσ(θ)
] 1

2

< ∞.

This will be proved elsewhere, see also [1] for similar results on characterization
of Lp-Poisson integrals on rank one symmetric spaces.
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