On the Approximate Solution of D’Alembert Type Equation Originating from Number Theory

B. Bouikhalene1, E. Elqorachi2, A. Charifi1

1Sultan Moulay Slimane University, Polydisciplinaire Faculty, Beni-Mellal, Morocco
2Ibn Zohr University, Faculty of Sciences, Agadir, Morocco
bbouikhalene@yahoo.fr, elqorachi@yahoo.fr, charifi2000@yahoo.fr

Presented by David Yost Received December 2, 2012

Abstract: We solve the functional equation

\[E(\alpha) : f(x_1x_2 + \alpha y_1y_2, x_1y_2 + x_2y_1) + f(x_1x_2 - \alpha y_1y_2, x_2y_1 - x_1y_2) = 2f(x_1, y_1)f(x_2, y_2), \]

where \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, f : \mathbb{R}^2 \to \mathbb{C}\) and \(\alpha\) is a real parameter, on the monoid \(\mathbb{R}^2\). Also we investigate the stability of this equation in the following setting:

\[|f(x_1x_2 + \alpha y_1y_2, x_1y_2 + x_2y_1) + f(x_1x_2 - \alpha y_1y_2, x_2y_1 - x_1y_2) - 2f(x_1, y_1)f(x_2, y_2)| \]

\[\leq \min\{|\varphi(x_1), \psi(y_1), \phi(x_2), \zeta(y_2)|\}. \]

From this result, we obtain the superstability of this equation.

Key words: D’Alembert functional equation, monoid \(\mathbb{R}^2\), multiplicative function, stability, superstability.

AMS Subject Class. (2010): 47D09, 22D10, 39B82.

1. Introduction

For any \(\alpha \in \mathbb{R}\), Berrone and Dieulefait [5] equipped \(\mathbb{R}^2\) with the multiplication rule \(\cdot_\alpha\), defined by

\[(x_1, y_1) \cdot_\alpha (x_2, y_2) = (x_1x_2 + \alpha y_1y_2, x_1y_2 + x_2y_1), \quad (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2.\]

For \(\alpha = -1\), the multiplication is the usual product of complex numbers in \(\mathbb{C} = \mathbb{R}^2\). The rule makes \(\mathbb{R}^2\) into a commutative monoid with neutral element \((1, 0)\) and \(\sigma(x, y) = (x, -y)\) (complex conjugation) as an involution.

Berrone and Dieulefait [5, Theorem 1] studied the homomorphisms \(m : (\mathbb{R}^2, \cdot_\alpha) \to (\mathbb{R},.)\), i.e., the multiplicative, real-valued functions on the monoid \((\mathbb{R}^2, \cdot_\alpha)\). We extend their investigations by finding the bigger set of all multiplicative, complex-valued functions \(M : (\mathbb{R}^2, \cdot_\alpha) \to (\mathbb{C},.)\). Combining
this information with Davison’s work [9] about D’Alembert’s functional equation on monoids, we obtain an explicit description of the solutions \(f : \mathbb{R}^2 \to \mathbb{C} \) of D’Alembert’s functional equation

\[
E(\alpha) : f(a \cdot \alpha b) + f(a \cdot \sigma(b)) = 2f(a)f(b), \quad a, b \in \mathbb{R}^2,
\]
on the monoid \((\mathbb{R}^2, \cdot, \sigma)\). The description falls into three different cases, according to whether \(\alpha > 0 \) or \(\alpha < 0 \). The equation \(E(\alpha) \) is a common generalization of many functional equations of type D’Alembert

\[
f(ab) + f(a\sigma(b)) = 2f(a)f(b), \quad a, b \in \mathbb{R}^2 \quad (1.1)
\]
on the monoid \(\mathbb{R}^2 \), like, e.g.,

1) If \(\alpha = 0 \),

\[
E(0) : f(x_1x_2, x_1y_2 + x_2y_1) + f(x_1x_2, x_2y_1 - x_1y_2) = 2f(x_1, y_1)f(x_2, y_2),
\]
for all \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\). Setting \(x_1 = x_2 = 1 \) and \(F(y) = f(1, y) \) for any \(y \in \mathbb{R} \) respectively \(y_1 = y_2 = 0 \) and \(m(x) = f(x, 0) \) for any \(x \in \mathbb{R} \) in \(E(0) \), we get the classical D’Alembert functional equation

\[
F(y_1 + y_2) + F(y_1 - y_2) = 2F(y_1)F(y_2), \quad y_1, y_2 \in \mathbb{R} \quad (1.2)
\]
on \(\mathbb{R} \) (see [1], [4], [15] and [23]) respectively the classical Cauchy equation

\[
m(x_1x_2) = m(x_1)m(x_2), \quad x_1, x_2 \in \mathbb{R} \quad (1.3)
\]
on \(\mathbb{R} \). We call \(m \) a multiplicative function on \(\mathbb{R} \) (see[1]).

2) If \(\alpha = -1 \),

\[
E(-1) : f(x_1x_2 - y_1y_2, x_1y_2 + x_2y_1) + f(x_1x_2 + y_1y_2, x_2y_1 - x_1y_2)
= 2f(x_1, y_1)f(x_2, y_2),
\]
\((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\). The equation \(E(-1) \) is in connection with the identity

\[
(x_1x_2 - y_1y_2)^2 + (x_1y_2 + x_2y_1)^2 + (x_1x_2 + y_1y_2)^2 + (x_2y_1 - x_1y_2)^2
= 2(x_1^2 + y_1^2)(x_2^2 + y_2^2) \quad (1.4)
\]
for any \(x_1, x_2, y_1, y_2 \in \mathbb{R} \).
3) If $\alpha \neq 1$ is a square free integer and $Q(\sqrt{\alpha}) = \{x + y\sqrt{\alpha} : x, y \in \mathbb{Q}\}$ is the quadratic monoid equipped with the multiplicative rule

$$(x_1 + y_1\sqrt{\alpha})(x_2 + y_2\sqrt{\alpha}) = (x_1x_2 + \alpha y_1y_2) + (x_1y_2 + x_2y_1)\sqrt{\alpha}, \quad (1.5)$$

then $E(\alpha)$ reduces to D’Alembert functional equation (1.1) on the monoid $Q(\sqrt{\alpha})$. In [9] Davison solved the D’Alembert functional equation with involution on a monoid A: any solution $f : A \rightarrow \mathbb{C}$ has the general form $f = M + M \circ \nu$, where $M : A \rightarrow \mathbb{C}$ is a multiplicative function.

In 1940, Ulam [22] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

Question 1.1. Let (G_1, \ast) be a group and let (G_1, \circ, d) be a metric group with the metric d. Given $\varepsilon > 0$, does there exist $\delta(\varepsilon) > 0$ such that if a mapping $h : G_1 \rightarrow G_2$ satisfies the inequality $d(h(x \ast y), h(x) \circ h(y)) < \delta$ for all $x, y \in G_1$, then there is a homomorphism $H : G_1 \rightarrow G_2$ with $d(h(x), H(x)) < \delta(\varepsilon)$ for all $x \in G_1$?

In 1941, Hyers [12] answered this question for the case where G_1 and G_2 are Banach spaces. In 1978, Rassias [20] provided a generalization of Hyer’s theorem which allows the Cauchy difference to be unbounded. The interested reader may refer to the book by Hyers, Isac, Rassias [13] for an in depth account on the subject of stability of functional equations. In 1982, Rassias [19] solved the Ulam problem by involving a product of powers of norms. Since then, the stability problems of various functional equations have been investigated by many authors (see [10], [11] and [14]). In [3] and [7] Baker et al. and Bourgin respectively, introduced the notion that by now is frequently referred to as superstability or Baker’s stability: if a function f satisfies the stability inequality $|E_1(f) - E_2(f)| \leq \varepsilon$, then either f is bounded or $E_1(f) = E_2(f)$. The superstability of D’Alembert’s functional equation $f(x + y) + f(x - y) = 2f(x)f(y)$ was investigated by Baker [4] and Cholewa [8]. Badora and Ger [2], and Kim ([16], [17] and [18]) proved its superstability under the condition $|f(x + y) + f(x - y) - 2f(x)f(y)| \leq \varphi(x)$ or $\varphi(y)$. In a previous work, Bouikhalene et al. [6] investigated the superstability of the cosine functional equation on the Heisenberg group. Following this investigation we study the superstability of the functional equation $E(\alpha)$ on the monoid $(\mathbb{R}^2, \cdot_\alpha)$. Also we say that a function $f : \mathbb{R}^2 \rightarrow \mathbb{C}$ is of approximate a cosine type function,
if there is $\delta > 0$ such that
\[|f(a \cdot_b b) + f(a \cdot_i b) - 2f(a)f(b)| < \delta, \quad a, b \in \mathbb{R}^2. \] (1.6)

In the case where $\delta = 0$, f satisfies the functional equation $E(\alpha)$. We call f a cosine type function on \mathbb{R}^2. The paper is organized as follows: In the first section after this introduction we solve the functional equation $E(\alpha)$. In the second section we study the superstability equation $E(\alpha)$.

2. Solution of equation $E(\alpha)$

According to [9] we drive the following lemma.

Lemma 2.1. The solution $f : \mathbb{R}^2 \rightarrow \mathbb{C}$ of $E(\alpha)$ is of the form
\[
 f = \frac{M + M \circ \sigma}{2},
\]
where $M : (\mathbb{R}^2, \cdot_\alpha) \rightarrow (\mathbb{C}, \cdot)$ is a multiplicative function.

By extending Berrone-Dieulefait’s result [5] to complex-valued multiplicative functions, we get the following lemmas.

Lemma 2.2. The multiplicative functions $M : (\mathbb{R}^2, \cdot_1) \rightarrow (\mathbb{C}, \cdot)$ are the functions
\[
 M(x, y) = m_1(x + y)m_2(x - y), \quad x, y \in \mathbb{R},
\]
where $m_1, m_2 : \mathbb{R} \rightarrow \mathbb{C}$ are multiplicative functions.

Lemma 2.3. The multiplicative functions $M : (\mathbb{R}^2, \cdot_0) \rightarrow (\mathbb{C}, \cdot)$ are the trivial function $M = 1$ and $M(0, y) = 0$ for any $y \in \mathbb{R}$ and $M(x, y) = m(x)\gamma(\frac{y}{x})$ for any $(x, y) \in \mathbb{R}^2$, with $x \neq 0$, where $m : \mathbb{R} \rightarrow \mathbb{C}$ is a multiplicative function and $\gamma : (\mathbb{R}, +) \rightarrow \mathbb{C}$ is an arbitrary character.

Lemma 2.4. The multiplicative functions $M : (\mathbb{C}, \cdot_{-1}) \rightarrow (\mathbb{C}, \cdot)$ are the trivial functions $M = 0$ and $M = 1$ and
\[
 M(z) = \begin{cases}
 \tilde{m}(|z|)\Gamma(\exp(i\theta)), & \text{for } z = |z|\exp(i\theta) \neq 0 \\
 0, & \text{for } z = 0,
\end{cases}
\]
where $\tilde{m} : (\mathbb{R}^+, \cdot) \rightarrow \mathbb{C}^*$ and $\Gamma : \{\exp(i\theta), \theta \in \mathbb{R}\} \rightarrow \mathbb{C}^*$ are arbitrary characters.
Proof. When $\alpha = -1$, the multiplicative rule \cdot_{-1} becomes the usual product numbers in \mathbb{C}. By using the polar decomposition $z = |z|\exp(i\theta)$ for any $z \in \mathbb{C}^*$ where $\theta = \arg(z)$, we get

$$M(|z_1||z_2|) = M(|z_1|)M(|z_2|), \quad z_1, z_2 \in \mathbb{C}^*$$

(2.1)

and

$$M(\exp(i(\theta_1 + \theta_2))) = M(\exp(i\theta_1))M(\exp(i\theta_2)), \quad \theta_1, \theta_2 \in \mathbb{R}.$$

(2.2)

By letting $\hat{m}(|z|) = M(|z|)$, for any $z \in \mathbb{C}^*$, and $\Gamma(\exp(i\theta)) = M(\exp(i\theta))$ for any $\theta \in \mathbb{R}$ it follows that $\hat{m} : (\mathbb{R}^+ , \cdot) \rightarrow \mathbb{C}^*$ and $\Gamma : \{\exp(i\theta), \theta \in \mathbb{R}\} \rightarrow \mathbb{C}^*$ are characters. If $z = 0$, we set $M(z) = 0$.

In the next corollary we give the set of all multiplicative complex-valued functions $M : (\mathbb{R}^2 , \cdot_\alpha) \rightarrow \mathbb{C}$.

Corollary 2.5. The multiplicative functions $M : (\mathbb{R}^2 , \cdot_\alpha) \rightarrow (\mathbb{C}, \cdot)$ are given by the following list:

I) If $\alpha > 0$, then

$$M(x, y) = m_1(x + y\sqrt{\alpha})m_2(x - y\sqrt{\alpha}), \quad (x, y) \in \mathbb{R}^2.$$

II) If $\alpha = 0$, then

a) $M(x, y) = 1$, for any $(x, y) \in \mathbb{R}^2$.

b) $M(0, y) = 0$, for any $y \in \mathbb{R}$.

c) $M(x, y) = m(x)\gamma(\frac{y}{x})$, for any $(x, y) \in \mathbb{R}^2$ with $x \neq 0$.

III) If $\alpha < 0$, then

a) $M(x, y) = 0$, for any $(x, y) \in \mathbb{R}^2$.

b) $M(x, y) = 1$, for any $(x, y) \in \mathbb{R}^2$.

\[c) \quad M(x, y) = \begin{cases} \hat{m}(\sqrt{x^2 - \alpha y^2})\Gamma(\arg(x + iy)), & \text{for } (x, y) \neq (0, 0) \\ 0, & \text{for } (x, y) = (0, 0). \end{cases} \]

where $m_1, m_2, m : \mathbb{R} \rightarrow \mathbb{C}$ are multiplicative functions, and $\hat{m} : (\mathbb{R}^+ , \cdot) \rightarrow \mathbb{C}^*$, $\Gamma : \{\exp(i\theta), \theta \in \mathbb{R}\} \rightarrow \mathbb{C}^*$ and $\gamma : (\mathbb{R}, +) \rightarrow \mathbb{C}$ are arbitrary characters.
The next theorem is the main result of this section.

Theorem 2.6. The set of solutions of the functional equation \(E(\alpha) \) consists of the following three cases:

A) If \(\alpha > 0 \), then

\[
f(x, y) = \frac{m_1(x)m_2(y)}{2} \left\{ m_1(y\sqrt{\alpha})m_2(-y\sqrt{\alpha}) + m_1(-y\sqrt{\alpha})m_2(y\sqrt{\alpha}) \right\},
\]

for any \((x, y) \in \mathbb{R}^2\).

B) If \(\alpha = 0 \), then

a) \(f(x, y) = 1 \), for any \((x, y) \in \mathbb{R}^2\).

b) \(f(0, y) = 0 \), for any \(y \in \mathbb{R} \).

c) \(f(x, y) = \frac{m(x)}{2} \left\{ \gamma\left(\frac{x}{2}\right) + \gamma\left(-\frac{y}{x}\right), \ (x, y) \in \mathbb{R}^2, \ x \neq 0 \right\} \)

C) If \(\alpha < 0 \), then \(f(0, 0) = 0 \) and

\[
f(x, y) = \frac{\tilde{m}\left(\sqrt{x^2 - \alpha y^2}\right)}{2} \left\{ \Gamma(\arg(x + iy)), \ (x, y) \in \mathbb{R}^2 \setminus (0, 0) \right\},
\]

where \(m_1, m_2, m : \mathbb{R} \rightarrow \mathbb{C} \) are multiplicative functions, and \(\tilde{m} : (\mathbb{R}^+, \cdot) \rightarrow \mathbb{C}^* \), \(\Gamma : \{\exp(i\theta), \ \theta \in \mathbb{R}\} \rightarrow \mathbb{C}^* \) and \(\gamma : \mathbb{R} \rightarrow \mathbb{C} \) are arbitrary characters.

Proof. According to Lemma 2.1 and Corollary 2.5 we get the proof of theorem. \(\square \)

3. **Superstability of equation \(E(\alpha) \)**

In the next theorem we establish the stability of \(E(\alpha) \).

Theorem 3.1. Let \(\varphi, \psi, \phi, \zeta : \mathbb{R} \rightarrow [0, +\infty[\) be functions and let \(f : \mathbb{R}^2 \rightarrow \mathbb{C} \) be a function such that

\[
|f(x_1x_2 + \alpha y_1y_2, x_1y_2 + x_2y_1) + f(x_1x_2 - \alpha y_1y_2, x_2y_1 - x_1y_2) - 2f(x_1, y_1)f(x_2, y_2)| \leq \min \{\varphi(x_1), \psi(y_1), \phi(x_2), \zeta(y_2)\}
\]

(3.1)
for all \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\) and \(\alpha\) is a real parameter. Then either \(f\) is bounded or \(f\) satisfies the functional equation

\[
E(\alpha) : f(x_1 x_2 + \alpha y_1 y_2, x_1 y_2 + x_2 y_1) + f(x_1 x_2 - \alpha y_1 y_2, x_2 y_1 - x_1 y_2) = 2f(x_1, y_1) f(x_2, y_2)
\]

for all \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\).

Proof. For all \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\) and \(\alpha\) a real parameter we get from the inequality (3.1) that

\[
\left| f(x_1 x_2 + \alpha y_1 y_2, x_1 y_2 + x_2 y_1) + f(x_1 x_2 - \alpha y_1 y_2, x_2 y_1 - x_1 y_2) - 2f(x_1, y_1) f(x_2, y_2) \right| \leq \varphi(x_1) \text{ or } \psi(y_1).
\]

(3.2)

Since \(f\) is unbounded then we can choose a sequence \((x_n, y_n)_{n \geq 1}\) in \(\mathbb{R}^2\) such that \(f(x_n, y_n) \neq 0\) and \(\lim_{n \to +\infty} |f(x_n, y_n)| = +\infty\). Taking \((x_2, y_2) = (x_n, y_n)\) in (3.2) we obtain

\[
\left| f(x_1 x_n + \alpha y_1 y_n, x_1 y_n + x_n y_1) + f(x_1 x_n - \alpha y_1 y_n, x_n y_1 - x_1 y_n) - 2f(x_1, y_1) f(x_n, y_n) \right| \leq \varphi(x_1) \text{ or } \psi(y_1)
\]

and

\[
\left| \frac{f(x_1 x_n + \alpha y_1 y_n, x_1 y_n + x_n y_1) + f(x_1 x_n - \alpha y_1 y_n, x_n y_1 - x_1 y_n)}{2f(x_n, y_n)} - f(x_1, y_1) \right| \leq \frac{\varphi(x_1)}{2|f(x_n, y_n)|} \text{ or } \frac{\psi(y_1)}{2|f(x_n, y_n)|}.
\]

That is we get

\[
f(x_1, y_1) = \lim_{n \to +\infty} \frac{f(x_1 x_n + \alpha y_1 y_n, x_1 y_n + x_n y_1) + f(x_1 x_n - \alpha y_1 y_n, x_n y_1 - x_1 y_n)}{2f(x_n, y_n)}.
\]

(3.3)

Setting \(X_n = x_2 x_n + \alpha y_2 y_n, Y_n = x_2 y_n + x_n y_2, \bar{X}_n = x_2 x_n - \alpha y_2 y_n, \bar{Y}_n = x_2 y_n - x_n y_2\). For any \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\) it follows that
\[\begin{align*}
&\left| f((x_1 x_2 + \alpha y_1 y_2)x_n + \alpha(x_1 y_2 + x_2 y_1) y_n, \\
&\quad (x_1 x_2 + \alpha y_1 y_2)y_n + x_n(x_1 y_2 + x_2 y_1)) \right| \\
+&\left| f((x_1 x_2 + \alpha y_1 y_2)x_n - \alpha(x_1 y_2 + x_2 y_1) y_n, \\
&\quad x_n(x_1 y_2 + x_2 y_1) - (x_1 x_2 + \alpha y_1 y_2)y_n) \right| \\
- &2f(x_1, y_1)f(x_2 x_n + \alpha y_2 y_n, x_2 y_n + x_n y_2) \\
+&\left| f((x_1 x_2 - \alpha y_1 y_2)x_n + \alpha(x_2 y_1 - x_1 y_2) y_n, \\
&\quad (x_1 x_2 - \alpha y_1 y_2)y_n + x_n(x_2 y_1 - x_1 y_2)) \right| \\
- &2f(x_1, y_1)f(x_2 x_n - \alpha y_2 y_n, x_2 y_n - x_n y_2) \\
\leq &\left| f((x_1 x_2 + \alpha y_1 y_2)x_n + \alpha(x_1 y_2 + x_2 y_1) y_n, \\
&\quad (x_1 x_2 + \alpha y_1 y_2)y_n + x_n(x_1 y_2 + x_2 y_1)) \right| \\
+&\left| f((x_1 x_2 - \alpha y_1 y_2)x_n - \alpha(x_2 y_1 - x_1 y_2) y_n, \\
&\quad x_n(x_2 y_1 - x_1 y_2) - (x_1 x_2 - \alpha y_1 y_2)y_n) \right| \\
- &2f(x_1, y_1)f(x_2 x_n + \alpha y_2 y_n, x_2 y_n + x_n y_2) \\
+&\left| f((x_1 x_2 - \alpha y_1 y_2)x_n + \alpha(x_2 y_1 - x_1 y_2) y_n, \\
&\quad (x_1 x_2 - \alpha y_1 y_2)y_n + x_n(x_2 y_1 - x_1 y_2)) \right| \\
+ &2f(x_1, y_1)f(x_2 x_n - \alpha y_2 y_n, x_2 y_n - x_n y_2) \\
= &\left| f(x_1 X_n + \alpha y_1 Y_n, x_1 Y_n + X_n y_1) + f(x_1 X_n - \alpha y_1 Y_n, X_n y_1 - x_1 Y_n) \\
&\quad - 2f(x_1, y_1)f(X_n, Y_n) \right| \\
+ &\left| f(x_1 \tilde{X}_n + \alpha y_1 \tilde{Y}_n, x_1 \tilde{Y}_n + \tilde{X}_n y_1) + f(x_1 \tilde{X}_n - \alpha y_1 \tilde{Y}_n, \tilde{X}_n y_1 - x_1 \tilde{Y}_n) \\
&\quad - 2f(x_1, y_1)f(\tilde{X}_n, \tilde{Y}_n) \right| \\
\leq & 2\varphi(x_1) \text{ or } 2\psi(y_1).
\end{align*}\]
So that

\[
\begin{aligned}
&f((x_1x_2 + \alpha y_1y_2)x_n + \alpha(x_1y_2 + x_2y_1)y_n, \\
&\qquad\quad \frac{(x_1x_2 + \alpha y_1y_2)y_n + x_n(x_1y_2 + x_2y_1))}{f(x_n, y_n)} \\
&+ f((x_1x_2 + \alpha y_1y_2)x_n - \alpha(x_1y_2 + x_2y_1)y_n, \\
&\qquad\quad \frac{x_n(x_1y_2 + x_2y_1) - (x_1x_2 + \alpha y_1y_2)y_n)}{f(x_n, y_n)} \\
&+ f((x_1x_2 - \alpha y_1y_2)x_n + \alpha(x_2y_1 - x_1y_2)y_n, \\
&\qquad\quad \frac{x_n(x_2y_1 - x_1y_2) + (x_1x_2 - \alpha y_1y_2)y_n)}{f(x_n, y_n)} \\
&+ f((x_1x_2 - \alpha y_1y_2)x_n - \alpha(x_2y_1 - x_1y_2)y_n, \\
&\qquad\quad \frac{x_n(x_2y_1 - x_1y_2) - (x_1x_2 - \alpha y_1y_2)y_n)}{f(x_n, y_n)} \\
&- 2f(x_1, y_1) \left\{ \frac{f(x_2x_n + \alpha y_2y_n, x_2y_n + x_ny_2)}{f(x_n, y_n)} + \frac{f(x_2x_n - \alpha y_2y_n, x_2y_n - x_ny_2)}{f(x_n, y_n)} \right\} \leq 2 \frac{\varphi(x_1)}{|f(x_n, y_n)|} \text{ or } 2 \frac{\psi(y_1)}{|f(x_n, y_n)|}
\end{aligned}
\]

for any \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\). Since \(|f(x_n, y_n)| \rightarrow +\infty\) as \(n \rightarrow +\infty\) we get that \(f\) satisfies \(E(\alpha)\).

By letting \(\min\{\varphi(x_1), \psi(y_1), \phi(x_2), \zeta(y_2)\} = \delta\) we get the Baker’s stability ([3], [4]) for the functional equation \(E(\alpha)\).

Corollary 3.2. Let \(\delta > 0\) and let \(f : \mathbb{R}^2 \rightarrow \mathbb{C}\) be a function such that

\[
|f(x_1x_2 + \alpha y_1y_2, x_1y_2 + x_2y_1) + f(x_1x_2 - \alpha y_1y_2, x_2y_1 - x_1y_2) \\
- 2f(x_1, y_1)f(x_2, y_2)| \leq \delta
\]

for all \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\) and \(\alpha\) is a real parameter. Then either \(f\) is bounded and \(|f(x, y)| \leq \frac{1+\sqrt{1+4\delta^2}}{2}\) for all \((x, y) \in \mathbb{R}^2\) or \(f\) satisfies the functional equation \(E(\alpha)\).
References

