Real Analytic Version of Lévy’s Theorem

A. EL KINANI, L. BOUCHIKHI

Université Mohammed V, Ecole Normale Supérieure de Rabat,
B.P. 5118, 10105 Rabat (Morocco)

Presented by Alfonso Montes
Received July 24, 2014

Abstract: We obtain real analytic version of the classical theorem of Lévy on absolutely convergent power series. Whence, as a consequence, its harmonic version.

Key words: Fourier series, Lévy’s theorem, weight function, weighted algebra, commutative Banach algebra, Hermitian Banach algebra, Gelfand space, functional calculus, real analytic function, harmonic function.

AMS Subject Class. (2010): 46J10, 46H30

1. Introduction

Let \(A \) be a complex Banach algebra with the involution \(x \mapsto x^* \) and unit \(e \). The spectrum of an element \(x \) of \(A \) will be denoted by \(Spx \). An element \(h \) of \(A \) is called hermitian if \(h^* = h \). The set of all Hermitian elements of \(A \) will be denoted by \(H(A) \). We say that the Banach algebra \(A \) is Hermitian if the spectrum of every element of \(H(A) \) is real ([9]). For scalars \(\lambda \), we often write simply \(\lambda e \) for the element \(\lambda e \) of \(A \). Let \(p \in]1, +\infty[\). We say that \(\omega \) is a weight on \(\mathbb{Z} \) if \(\omega : \mathbb{Z} \longrightarrow [1, +\infty[\), is a map satisfying

\[
c(\omega) = \sum_{n \in \mathbb{Z}} \omega(n) \frac{1}{1-p} < +\infty. \tag{1}
\]

We consider the following weighted space:

\[
\mathcal{A}^p(\omega) = \{ f : \mathbb{R} \longrightarrow \mathbb{C} : f(t) = \sum_{n \in \mathbb{Z}} a_n e^{int}, \ a_n \in l^p(\mathbb{Z}, \omega) \}.
\]

Endowed with the norm \(\| . \|_{p,\omega} \) defined by:

\[
\| f \|_{p,\omega} = \left(\sum_{n \in \mathbb{Z}} |a_n|^p \omega(n) \right)^{\frac{1}{p}}, \text{ for every } f \in \mathcal{A}^p(\omega),
\]

153
the space $A^p(\omega)$ becomes a Banach space. Moreover, if there exists a constant $\gamma = \gamma(\omega) > 0$ such that
\[
\omega^{\frac{1}{1-p}} \ast \omega^{\frac{1}{1-p}} \leq \gamma \omega^{\frac{1}{1-p}}
\] (2)
then $(A^p(\omega), ||.||_{p,\omega})$ is closed under pointwise multiplication and it is a commutative semi-simple Banach algebra with unity element \hat{e} given by $\hat{e}(t) = 1$ ($t \in \mathbb{R}$) ([4]). For the weight function ω on \mathbb{Z} satisfying (2) and $\omega(n+m) \leq \omega(n)\omega(m)$, for every $n, m \in \mathbb{Z}$, it is also shown in ([4]), that the character space of $(A^p(\omega), ||.||_{p,\omega})$ can be identified with the closed annulus:
\[
\Gamma_\omega(\rho_1, \rho_2) = \{ \xi \in \mathbb{C} : \rho_1(\omega) \leq |\xi| \leq \rho_2(\omega) \},
\]
in such a way that each character has the form $f \mapsto \sum_{n \in \mathbb{Z}} a_n \xi^n$ for some $\xi \in \Gamma_\omega(\rho_1, \rho_2)$, where $f = \sum_{n \in \mathbb{Z}} a_n u^n \in A^p(\omega)$ with $u(t) = e^{it}$, for every $t \in \mathbb{R}$. For ρ_1 and ρ_2, they are given by:
\[
\rho_1 = e^{-\sigma_2} \quad \text{and} \quad \rho_2 = e^{-\sigma_1}
\]
where
\[
\sigma_1 = \sup \left\{ \frac{-1}{np} \ln(\omega(n)), \quad n \geq 1 \right\} \quad \text{and} \quad \sigma_2 = \inf \left\{ \frac{1}{np} \ln(\omega(-n)), \quad n \geq 1 \right\}.
\]
The real analytic functional calculus is defined and studied in [1]. To make the paper self-contained, we recall the fundamental properties of this calculus. Let U be an open subset of \mathbb{R}^2 and $F : U \rightarrow \mathbb{C}$ be real analytic function. Then there exists an open subset V, of \mathbb{C}^2, and an holomorphic function $\tilde{F} : V \rightarrow \mathbb{C}$ such that
\[
V \cap \mathbb{R}^2 = U \quad \text{and} \quad \tilde{F}|_U = F.
\]
For the construction of V, we have $V = \bigcup_{x \in U} \Omega_x$, where Ω_x is an open of \mathbb{C}^2 centered at x. We denote by $\Lambda_0(U)$ the set of all open subset V described us above and we consider, in $\Lambda_0(U)$, the order given in the following way:
\[
V \preceq W \iff W \subset V.
\]
For $V \in \Lambda_0(U)$, we denote by $\mathcal{O}(V)$ the set of holomorphic functions on V. Now we consider the family $(\mathcal{O}(V))_{V \in \Lambda_0(U)}$ of algebras and for every $V, W \in \Lambda_0(U)$ with $V \subseteq W$, let

$$\pi_{W,V} : \mathcal{O}(V) \rightarrow \mathcal{O}(W) : F \mapsto F|_W$$

The family of algebras $(\mathcal{O}(V))_{V \in \Lambda_0(U)}$ with the maps $\pi_{W,V}$ is an inductive system of algebras and it is denoted by $(\mathcal{O}(V), \pi_{W,V})$. Let $\varprojlim (\mathcal{O}(V), \pi_{W,V})$ its inductive limit. We shall denote this simply by $\varprojlim \mathcal{O}(V)$ and we have:

$$\varprojlim \mathcal{O}(V) = \bigcup_{V \in \Lambda_0(U)} \mathcal{O}(V)$$

In the sequel, we denote by $A(U)$ the algebra of real analytic functions on U. By lemma 2.1.1 of [1], the map

$$\Psi : A(U) \rightarrow \varprojlim \mathcal{O}(V) : f \mapsto \Psi(f)$$

is an isomorphism algebra. Now let A be a commutative and unital Hermitian Banach algebra (with continuous involution) and $a \in A$. Then $a = h + ik$ with $h, k \in H(A)$. Put $a' = (h, k)$ and Sp_Aa' the joint spectrum of (h, k). We denote by $\Theta_{a'}$ the map that defined the holomorphic functional calculus for a'. One has $Sp_A(h, k) \subset Sp_Ah \times Sp_Ak \subset \mathbb{R}^2$. By the identification $\mathbb{R}^2 \cong \mathbb{C}$, via the map $(x, y) \mapsto x + iy$, we can consider that

$$Sp_Aa \simeq Sp_A(h, k)$$

and this motivates the following definition:

Definition 1.1. ([1], Définition 2.1.2) Let A be a commutative and unital Hermitian Banach with continuous involution, $a \in A, U$ an open subset, of \mathbb{R}^2, containing Sp_Aa and $f \in A(U)$. We denote by $f(a)$ the element of A defined by:

$$f(a) = \Theta_{a'}(\Psi(f)) = \Psi(f) (h, k),$$

where $a = h + ik$ and $a' = (h, k)$ with $h, k \in H(A)$.

The fundamental properties of this functional calculus are contained in the following result:
PROPOSITION 1.2. ([1]) 1. The mapping $f \mapsto f(a)$ is a homomorphism of $\mathcal{A}(U)$ into \mathcal{A} that extends the involutive homomorphism from $\mathcal{h}(U)$ into \mathcal{A}, where $\mathcal{h}(U)$ is the set of all harmonic functions on U.

2. “Spectral mapping theorem”:

$$Sp_\mathcal{A}f(a) = f(Sp_\mathcal{A}a), \text{ for every } f \in \mathcal{A}(U).$$

Let $f(t) = \sum_{n \in \mathbb{Z}} a_ne^{int}$ be a periodic function such that $\sum_{n \in \mathbb{Z}} |a_n| < +\infty$. If F is an holomorphic function defined on an open set containing the image of f, then $F(f)$ can be developed in trigonometric series $F(f)(t) = \sum_{n \in \mathbb{Z}} c_ne^{int}$ such that $\sum_{n \in \mathbb{Z}} |c_n| < +\infty$. This result due to P. Lévy ([7]) generalizes the famous theorem of N. Wiener ([10]) which states that the reciprocal of a nowhere vanishing absolutely convergent trigonometric series is also an absolutely convergent trigonometric series. In this paper, we consider the general case of a weight ω on \mathbb{Z} which satisfies (2), (3) and

$$\lim_{|n| \to +\infty} (\omega(|n|))^{1/p} = 1. \quad (4)$$

We then consider $f \in \mathcal{A}^p(\omega)$ and F an analytic function in two real variables on a neighborhood U of Spf. In this case, we obtain a weighted analogues of Lévy’s theorem which states that $F(f)$ can be developed in trigonometric series $F(f)(t) = \sum_{n \in \mathbb{Z}} c_ne^{int}$ such that

$$\sum_{n \in \mathbb{Z}} |c_n|^p \omega(n) < +\infty.$$

To proceed, we consider the Banach algebra $(\mathcal{A}^p(\omega), \|\cdot\|_{p,\omega})$ endowed with the involution $f \mapsto f^*$ defined by:

$$f^*(t) = \sum_{n \in \mathbb{Z}} a_{-n}e^{int}, \text{ for every } f \in \mathcal{A}^p(\omega).$$

We prove that $(\mathcal{A}^p(\omega), \|\cdot\|_{p,\omega})$ is Hermitian. In the particular case where F is a harmonic function in a neighborhood of $f(\mathbb{R})$, we prove that the expression of $F(f)$ is also given by the Poisson integral formula ([1]).

2. REAL ANALYTIC VERSION OF LEVY’S THEOREM

Now we are ready to generalize Levy’s theorem for real analytic functions.
Theorem 2.1. (Real analytic version of Lévy’s theorem) Let $p \in]1, +\infty[$ and ω be a weight on \mathbb{Z} satisfying (2), (3) and (4). Let $f(t) = \sum_{n \in \mathbb{Z}} a_n e^{int}$ be a periodic function such that

$$\sum_{n \in \mathbb{Z}} |a_n|^p \omega(n) < +\infty.$$

Let F be an analytic function in two real variables on an open U containing the image of f, then the function $F(f)$ also can be developed in a trigonometric series $F(f)(t) = \sum_{n \in \mathbb{Z}} c_n e^{int}$ such that

$$\sum_{n \in \mathbb{Z}} |c_n|^p \omega(n) < +\infty.$$

Proof. We consider the Banach algebra $(\mathcal{A}^p(\omega), \| \cdot \|_{p, \omega})$ endowed with the involution $f \mapsto f^*$ defined by:

$$f^*(t) = \sum_{n \in \mathbb{Z}} a_{-n} e^{int}, \text{ for every } f \in \mathcal{A}^p(\omega).$$

One can prove that the map $f \mapsto f^*$ is an algebra involution on $(\mathcal{A}^p(\omega), \| \cdot \|_{p, \omega})$. Moreover, it is continuous for the algebra is semi-simple. By the real analytic functional calculus given by Definition 1.1, the proof will be completed by proving that the last involution is hermitian in $(\mathcal{A}^p(\omega), \| \cdot \|_{p, \omega})$. By hypothesis, $\lim_{|n| \to +\infty} (\omega(|n|))^{\frac{1}{p}} = 1$. Then the character space $\mathcal{M}(\mathcal{A}^p(\omega))$ of $(\mathcal{A}^p(\omega), \| \cdot \|_{p, \omega})$ can be identified with $[0, 2\pi]$ in such a way that each character is an evaluation at some $t_0 \in [0, 2\pi]$. This implies that

$$Spf = \{f(t) : t \in [0, 2\pi]\}, \text{ for every } f \in \mathcal{A}^p(\omega).$$

Now, it is clear, that $f(t) = \sum_{n \in \mathbb{Z}} a_n e^{int}, t \in \mathbb{R}$, is a hermitian element of $\mathcal{A}^p(\omega)$ if and only if

$$a_{-n} = \overline{a_n}, \text{ for every } n \in \mathbb{Z}$$

and so $Sp(f) \subset \mathbb{R}$. Whence $(\mathcal{A}^p(\omega), \| \cdot \|_{p, \omega})$ is Hermitian with continuous involution. This completes the proof.

Remark 2.2. Actually, the reader can prove that the algebra $(\mathcal{A}^p(\omega), \| \cdot \|_{p, \omega})$ is Hermitian if and only if

$$\lim_{|n| \to +\infty} (\omega(|n|))^{\frac{1}{p}} = 1.$$

Indeed, if the algebra $(\mathcal{A}^p(\omega), \| \cdot \|_{p, \omega})$ is Hermitian. Let $f : t \mapsto \sum_{n \in \mathbb{Z}} a_n e^{int}$ be a hermitian
element of \((A^p(\omega), \| \cdot \|_{p, \omega})\). Then \(Sp(f) \subset \mathbb{R}\). Hence
\[
\Phi_\zeta(f) = \overline{\Phi_\zeta(f)}, \text{ for every } \zeta \in \Gamma_\omega(\rho_1, \rho_2),
\]
where
\[
\Phi_\zeta(f) = \sum_{n \in \mathbb{Z}} a_n \zeta^n \quad \text{and} \quad \overline{\Phi_\zeta(f)} = \sum_{n \in \mathbb{Z}} a_n \overline{\zeta}^{-n}, \text{ for every } \zeta \in \Gamma_\omega(\rho_1, \rho_2).
\]
It follows that
\[
|\zeta| = 1, \text{ for every } \zeta \in \Gamma_\omega(\rho_1, \rho_2).
\]
This yields \(\rho_1 = \rho_2 = 1\), and one obtains that
\[
\lim_{|n| \to +\infty} (\omega(|n|))^{\frac{1}{p}} = 1.
\]
Harmonic functions are particular real analytic functions. In this case, we have the following:

\textbf{Corollary 2.3. (Harmonic version of Lévy’s theorem)} Let \(p \in]1, +\infty[\) and \(\omega \) be a weight on \(\mathbb{Z} \) satisfying (2), (3) and (4). Let \(f(t) = \sum_{n \in \mathbb{Z}} a_n e^{int} \) be a periodic function such
\[
\sum_{n \in \mathbb{Z}} |a_n|^p \omega(n) < +\infty.
\]
Let \(U \) be an open subset of \(\mathbb{C} \), \(z_0 \in U \) such that \(\overline{D(z_0, r)} \subset U \) \((r > 0)\) and \(f(\mathbb{R}) \subset D(z_0, r)\). If \(F \in h(U) \), then
\[
F(f) = \frac{1}{2\pi} \int_{|z - z_0| = r} F(z) \text{Re}[(z + f - 2z_0)(z - f)^{-1}] \frac{|dz|}{r}
\]
can be developed in a trigonometric series \(F(f)(t) = \sum_{n \in \mathbb{Z}} c_n e^{int} \) such that
\[
\sum_{n \in \mathbb{Z}} |c_n|^p \omega(n) < +\infty.
\]
References

