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Abstract The computation time required by standard finite difference methods
with fixed timesteps for solving fractional diffusion equations is usually very large
because the number of operations required to find the solution scales as the square
of the number of timesteps. Besides, the solutions of these problems usually involve
markedly different time scales, which leads to quite inhomogeneous numerical errors.
A natural way to address these difficulties is by resorting to adaptive numerical
methods where the size of the timesteps is chosen according to the behaviour of the
solution. A key feature of these methods is then the efficiency of the adaptive algo-
rithm employed to dynamically set the size of every timestep. Here we discuss two
adaptive methods based on the step-doubling technique. These methods are, in many
cases, immensely faster than the corresponding standard method with fixed timesteps
and they allow a tolerance level to be set for the numerical errors that turns out to be
a good indicator of the actual errors.
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1 Introduction

Interest in fractional calculus is flourishing, to a large extent, due to its usefulness
as a mathematical tool for tackling an increasing variety of scientific problems usu-
ally associated with complex systems that show some kind of long-term memory. In
control engineering, fractional calculus have been successfully employed for many
years. In statistical physics, fractional calculus is extremely useful in the study of
some systems in which the diffusive processes are anomalous. In particular, it can be
rigorously proved that fractional diffusion equations are the appropriate equations to
describe the spread of some classes of continuous time random walkers in the same
way that normal diffusion equations describe the diffusion of Brownian walkers (see,
for example, the review chapter of Metzler and Jeon in Ref. [1]).

Of course, the utility of fractional calculus is linked to our ability to extract use-
ful information about the systems concerned from this formalism. Fortunately, many
of the long-time well-established analytical methods employed to study normal dif-
fusion equations can be adapted to fractional diffusion equations. For example, in
many cases fractional and normal diffusion equations can be solved similarly in
Fourier-Laplace space. However, as is the case too with non-fractional problems, it
is also very convenient (or even indispensable) to have at our disposal numerical
procedures for studying these equations, and thus get information about the systems
they describe. The study of numerical methods for solving fractional equations has
been an area of quite active research in recent years (see relatively recent accounts
of the literature on this issue in Refs. [2] and [3]). As also for non-fractional differ-
ential equations, finite difference methods are one of the most important classes of
numerical methods for solving fractional partial differential equations.

Usually, finite difference methods developed for fractional diffusion equations
employ uniform time discretization, i.e., fixed timesteps [3]. But methods of this
kind have two main drawbacks: they are slow and their accuracy is inconsistent. In
fact, they become increasingly slower as time goes by: the CPU time required to
get the solution at time ¢ grows as the square of t (i.e., the arithmetic complexity of
these algorithms is of the order A~2, with A being the size of the timestep). This
difficulty has been recognized for a long time, and some procedures have been pro-
posed to alleviate it. The most obvious is to increase the order of accuracy of the
numerical method so that larger timesteps can be used without losing the accuracy
of the solutions [3]. Another approach is based on the so-called “short memory prin-
ciple” [4] that, in summary, either tries to cap the number of required operations per
step assuming that the influence of the previous values of the solution for times far
from the present time can be neglected [5], or takes advantage of the way in which
the kernel of the fractional derivative decays to get arithmetic complexity of order
A~!log A=! [6]. Another problem of standard methods with fixed timesteps, one
that is rarely noticed, is that the accuracy of their numerical results changes strongly
(even by orders of magnitude, see the figures in Section 3) over the time interval of
integration. The reason for this behaviour can be traced back to the typical behaviour
of the solutions of many fractional diffusion equations. In many cases, these solu-
tions can be written as a superposition of generalized Fourier modes that decay as
Mittag-Leffler functions. But, as is well known [7], these functions decay very fast
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for short times and very slowly for longer times. This behaviour is, in many cases,
inherited by the full solution. Indeed, in these cases, to use fixed timesteps to deal
with such different time regimes seems a poor choice.

These problems regarding the speed and accuracy of finite difference methods
can be alleviated by using methods with adaptive timesteps. This kind of method
has the great advantage that the size of the timesteps can be chosen according to the
behaviour of the solution. Ideally, a good adaptive method, as Press et al. say for ODE
integrators, “should exert some adaptive control over its own progress, making fre-
quent changes in its stepsize ... Many small steps should tiptoe through treacherous
terrain, while a few great strides should speed through smooth uninteresting country-
side ... [so as to] achieve some predetermined accuracy in the solution with minimum
computational effort” [8]. In order to construct this kind of method for fractional dif-
fusion equations, two key ingredients are required: first, a finite difference method
that can work with variable timesteps, and second, a procedure for choosing the size
of the timesteps. Finite difference methods that can work with variable timesteps are
scarce. Some examples are the matrix approach on non-equidistant grids by Podlubny
et al. [10], a generalized Crank-Nicolson method by Mustapha et al. [11, 12], a
non-uniform L1 time discretization [13—15], and a generalization of the original con-
volution quadrature method by Lubich [16]. The finite difference method we employ
in this paper is an unconditionally stable implicit method discussed in Ref. [13]; the
adaptive control procedure is based in the so-called step-doubling technique [8, 9].

The paper is organized as follows. In Section 2 we present an unconditionally
stable finite difference scheme that is able to solve fractional diffusion equations
by employing variable timesteps. In Section 3 we present two adaptive algorithms
for choosing the size of the timesteps and we analyze and compare their speed and
accuracy: the trial and error method (considered in Ref. [14]) and the one we call
predictive method. In Section 4 we discuss four examples that show some relevant
features of our adaptive methods and we provide an alternative comparison of the
speeds of these methods. We end with some remarks and conclusions.

2 Algorithm with non-uniform timesteps

The equation we consider is a one-dimensional fractional diffusion equation in the
Caputo form

Pu_ P (1)
Fu _
oty ox2

where f(x,t) is a source term and

1 dy
Wy(t)zr(l—y)/odr(t—r)y a0 0 =h @

is the Caputo fractional derivative [5]. The extension of our procedure to other
spatial dimensions and to other equations with terms involving standard non-
fractional spatial derivatives (e.g., the fractional Fokker-Planck equation [17]) is
straightforward.
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In this paper, the Caputo time derivative is discretized by means of a direct
generalization of the well-known fractional L1 formula [18] to the case of non-
uniform meshes [13]. This non-uniform time discretization is a key part of our
approach. Because our purpose is to study adaptive methods that tackle the difficul-
ties associated with the fractional nature of the time-derivative operator by employing
non-uniform timesteps, we limit ourselves to the simple discretization of the non-
fractional part of the equation (the Laplacian operator) by means of the three-point
centred formula. For the case of uniform timesteps the present method becomes the
numerical scheme discussed by Liu et al. [19] and Murio [20]. It can be proved
that the method is unconditionally stable regardless of the size of the (non-uniform)
timesteps employed [13, 15]. A key aspect of the present method is the way in
which the fractional derivative is discretized on a non-uniform temporal mesh; the
discretization of the non-fractional spatial operator can be implemented straightfor-
wardly by means of standard procedures of non-fractional finite difference methods
[21]. For the sake of completeness, we shall give here the main formulas of this finite
difference scheme on non-uniform temporal meshes.

Let (x}, t;,) be the coordinates of the (j, m) node of the mesh of the space-time
region where one wants to obtain the numerical solution of the fractional equation.
We will denote by U](m) the numerical estimate provided by the difference methods

of the exact solution u(x;, t;,) = u™. Next, we replace the continuous operators of
the fractional equation by suitably chosen difference operators:

97
) = Z Tyl [u e, ) — )]+ R,y 6) - 3)
where [13]
I — _ _
T(y) _ (I=y) flmﬂ(tn —1)77dt _ (ty — tm)l Y —(t, — tm+1)1 14 @)
" Im4+1 — Im Im+1 — Im

and m < n—1. The truncation error R;, (x) is bounded by a quantity that is the sum of
one term of order A%_ and another of order Afnax Y [15] where A, = t,, — f,_].
The Laplacian operator is given by the three-point centred formula:

82

uxiv1,t) —2ulx;,t) +ulxiy,t
—zu(xj,t)z (]+1 ) (j ) (]—H )
X

(Ax)?

+ Ry (). 5)

The truncation error Ry, (¢) is of order (Ax)2. Neglecting the truncation errors

and multiplying the equation by A} one gets the difference approximation to the
continuous equation [13]:

e
Z Trf,’fﬁ [U]‘.”’“) _ U;’”)] = S,[u™ — 2U(") + U(n)l] i F(n) (6)

Jj+1
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where [13, 23]

D R (0
n = Y ax?
7 = AL 1) ®)
F™ = T@—y) A} fGxjtn): ©)

Reordering (6) one gets the following (implicit) finite difference scheme:

n—2
-1 - 1
=S, U +(425)U" =5, U = U =S BN (U - U]+,
m=0

(10)
which can be written in matrix-vector form as

AUD =G (U<"—”, un-2 oy ©® g, tn) , (11)

where U™ stands for the vector {U/(.m) } This equation, AU = G, is formally identi-

cal to that of the non-fractional differential equation, and its solution U = A~'G can
be obtained very efficiently by means of the Thomas algorithm because A is a tridi-
agonal matrix. The key difference with respect to non-fractional algorithms is that,
in order to evaluate G, the numerical solution U™ for all the n previous time values
has to be employed [see the right-hand side of (10)], while for non-fractional equa-
tions (i.e., for y = 1) only the solution at the previous value U~V is required. This
explains why finite difference methods are increasingly slow: the computational cost
of going from the solution at time #,_1 to the solution at time ¢, grows as n, i.e., as
the number of terms of the sum that defines G, which implies that the computational

cost for going from 1o to #, grows as n”.

3 Adaptive methods

In the previous section we have presented a finite difference method that can work
with variable timesteps. This is the first key ingredient of our adaptive method.
The second ingredient is a procedure for choosing the size of the timesteps accord-
ing to the behaviour of the solution. In this paper, we shall consider two methods:
the trial and error (T&E) step-doubling algorithm [14], and the predictive step-
doubling algorithm. Both algorithms are based on the step doubling technique [8]:
the numerical solution at a given time f, is evaluated twice, first employing a full
step A, = t, — t,—1 and, next, independently, using two half steps of size A, /2;
the difference £ between the two numerical estimates of the solution, U,E") and

U, ,5"), respectively (see Fig. 1), gauges the truncation error. The control algorithm, by
adjusting the size of the timesteps, keeps this difference around a prefixed value 7, the
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Fig. 1 Scheme of the step-doubling technique. The solution at time 7, is obtained by means of (i) a full
timestep of size #, — f,—1 and (ii) by means of two steps of size (¢, —t,—1)/2. The difference £ ™) between
both solutions is used as an indicator of the numerical error

tolerance. Hopefully, this tolerance is an indicator of the size of the actual numerical
error (see the Appendix). In this paper we define the difference £ in this way:

£ = max |G - u"|. (12)
allk
Similarly, we define the numerical error at time ¢, by
error(ty) = E™ = nlllax u(xj, ty) — Uk(") . (13)
all x j

In the next two subsections we describe in detail these two methods and discuss
their main characteristics and performance. To do this, we will use the following
problem as testbed:

lu 3%u 0<x< 14
E =X =7, (14a)
ux=0,t) =u(x=m,t)=0, (14b)
u(x,0) =sinx. (14¢)
Its exact solution is specially simple
u(x,t) = E,(—t")sin(x) (15)

with E, being the Mittag-Leffler function [7].
3.1 Trial and error method

In the trial and error (T&E) algorithm the procedure for choosing the size of the
timesteps is as follows [14]:

1. If, initially, £ is larger than the tolerance 7, then we halve the timestep A,, and
check whether the new difference £ corresponding to the new timestep (i.c.,
to the timestep A, /2) is still larger than the tolerance. We repeat this procedure
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until the difference £ is smaller than 7. In this case we get the last timestep as
the appropriate value.

2. But if, initially, the difference £ () is smaller than the tolerance 7, then we dou-
ble the size of the timestep. We repeat this procedure until £ is larger than
the tolerance. When this happens, we take as appropriate timestep the timestep
previous to the last one.

As starting value for A, we use the value of the previous timestep A,_;. Therefore
Ay is undefined and its value has to be given in order to initiate the algorithm. We
have always taken Ag = 0.01 because this seeding value is largely irrelevant since
the T&E algorithm quickly finds a timestep A that leads to a suitable £V,

In order to see how good the T&E algorithm is, we checked its speed (that is,
its capacity to integrate the equation over large time intervals employing small CPU
times) and the size of the errors that the method provides when applied to the testbed
problem (14). Unless otherwise explicitly stated, the CPU times are not given in sec-
onds but in units of 759, which is the CPU time employed by our method with fixed
timesteps (i.e, without implementing any adaptive choice of the size of the timesteps)
to get the solution of the problem (14) for y < 1 when 50 timesteps are used (in
our computer Tso =~ 1.4 seconds). In this way the CPU-time values reported here are
expected to be roughly independent of the particular computer system employed. The
normalized CPU time required to evaluate the numerical solution of a given problem
at time ¢ will be denoted by Tcpy (7).

In Fig. 2, we compare Tcpy(?) for y = 1/4 corresponding to the T&E method
with tolerance = 10~ with the Tcpu values for the standard (non-adaptive) method
with fixed timesteps of size A, = 0.01. First we see that, as expected, the CPU time
required by the standard method grows quadratically: Tcpy o< 12. However, for the

100 E
Q I et
§ 10- . ;}..é;plpl';ﬂ 4
2 ¢ ¥a0’"
S ol e ]
,»*’Q" e
(i o
0L G i i vt i 3
1E-8 1E-6 1E-4 0.01
t

Fig. 2 Normalized computational time Tcpy (¢) required by the fixed-step method with A = 0.01 (trian-
gles), by the T&E method (circles), and by the predictive method with 0 = 3/2 and w = 1 (open squares)
and w = 1/2 (solid squares), to solve problem (14) with y = 1/4 up to time ¢. In all cases Ax = /40,
7 =10"%and Ag = 0.01. The lines are guides to the eye; their slopes (0.2 for the dashed line, 0.1 for the
dotted line, 2 for the solid line) provide estimates of the power exponent 8 in Tcpy(f) ~ P
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Table 1 CPU time (in seconds) employed to get the solution of (14) with y = 1/4 up to time ¢ by (i) the
method with fixed timesteps (FT) with A = 0.01, and (ii) by the T&E method with tolerance t = 1074,
In both methods Ax = 7 /40. The CPU time required by the FT method to find the solution at ¢t = 502.4
is an estimate obtained by extrapolation (see Fig. 2)

' 0.12 1.29 2.58 3.22 8.34 502.4
Tepy (FT) 0.2 8 33 49 346 > 2 weeks
Tepy (T&E) 17 26 29 29 32 43

T&E method one finds that Tcpy o t# with B &~ 0.2. That is, the growth of the
computational time is not quadratic, not even linear, but sublinear! In fact, the growth
is even slower for longer times (8 = 0.1)! This means that, except for short times, the
adaptive method is immensely faster than the standard method with fixed timesteps.
In Table 1 we give some specific values of Tcpy(#) in seconds. It is clear that the
standard method becomes useless for times ¢ above a few tens when A, = 0.01 or,
equivalently, when the number of timesteps is above a few thousands.

The CPU times of the T&E method given in Fig. 2 and Table 1 correspond to a
tolerance T = 10~%. In Fig. 3, we show Tcpy(¢) for several values of t. As expected,
the speed of the method increases when the tolerance increases (of course, the price to
be paid is that the method is then less accurate as we shall see below). It is interesting
to note that Fig. 3 shows that the CPU time is, in fact, roughly proportional to ="
with  around 1. For example, when 7 changes from 7 = 103 tot = 107%, ones
sees that the CPU time increases approximately by a factor of ten. For other values of
y, a very similar behaviour is found. This can be explained by the following back-of-
the-envelope argument. By construction, T ~ £ () but, as will be seen in Section 3.2,
EM ~ Az where 6 ~ 3/2. Then A, ~ /¢ For a given time, ¢, Tcpy (t) ~ n? ~
(t/Ar)* where At is here the average value of the timesteps given until time 7. But

if the size of the timesteps scales roughly as 7!/?, then one expects that its average
T T T T T T T T T T T
100 ¢ 5
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<1<1<]<] y 3 o o0 ©
< 0© v v
§ 10- qqqqoooow vV
= <]<]<1 0 © vvvv DDDDDD o
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) < oY g AnA
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Fig. 3 Normalized computational time Tcpy vs ¢ for the method with fixed timesteps with A = 0.01
(solid triangles) and for the T&E method with tolerance 1075 (left triangles), 5 x 10~4 (circles), 1074
(down triangles), 2 x 10~ (squares), 1073 (open up triangles). In all cases y = 1/4, Ax = /40 and
Ap = 0.01
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should scale similarly, At ~ 71/9 Therefore Tepy (1) ~ t=" with n = 2/6. For
0 ~ 3/2 one gets n ~ 1.3, which is not far from 1.

Figure 4 shows how the computational time Tcpy(#) depends on the fractional
parameter y. One sees that, approximately, Tcpy(r) ~ t# and that 8 increases when
y increases (§ — 2 when y — 17). However, the value y = 1 is singular: there is a
drastic change of the CPU times between ¥y — 1~ and y = 1. The reason for this is
clear: for y = 1 the operator dy /dt” on the left hand side of (1) is a pure differential
operator (i.e., a local operator, no longer an integro-differential operator), and then
it is not necessary to carry out the sum of the right hand side of (10), which is what
makes fractional finite difference methods so (increasingly) slow. For this reason, the
CPU times required to integrate the normal diffusion problem (y = 1) are far shorter
than the CPU times for subdiffusion problems (y < 1). Note that for y < 1, no
matter how close is y to unity, one has to spend a lot of computation time evaluating
this sum even though one knows that the closer y is to unity the closer the sum is to
ZEero.

Regarding the error, one sees in Fig. 5 that the adaptive algorithm provides quite
homogeneous errors, that is, this technique has the convenient property that it keeps
the errors to a desired degree of accuracy, neither too large nor too small. This
should be compared with the quite uneven errors of the standard method with fixed
timesteps. (In short, non-uniform timesteps lead to uniform errors while uniform
timesteps lead to quite non-uniform errors.) Finally, one sees in Fig. 5 that the errors
are close to the tolerance, in particular, that they are of the same order of magni-
tude (around three times the tolerance in this case). This example illustrates the fact
that this adaptive algorithm has the nice property that the tolerance, a quantity one
can fix at will, is a convenient indicator of the accuracy of the numerical method.
In Ref. [22] we provide a MATHEMATICA code where this adaptive T&E method is
implemented and some of the examples considered in this paper are solved.

100 £ ..n'/_
° _
a
5 0.
BUTESECE T /A
= o o Lo o AAAVV <><>.
b o AN v QO-
Y o B A A \% O o
O 0 A VO
1o A v ° Fete W
\% <&
N B} . N W
L]
i
A v S . ﬁﬁ,’*ﬁ
0.1¢ . 2 . 3
1E-3 0.01 0.1 1 10

Fig. 4 Normalized computational time 7cpy vs ¢ when problem (14) is solved by means of the T&E
method with T = 10™4 for y = 0.25,0.5,0.75,0.9,0.99, 1 (open circles, squares, up triangles, down
triangles, diamonds, stars, respectively) and by the method with fixed timesteps with A = 0.01 (solid
circles). In all cases Ax = /40 and Ap = 0.01
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0.01}

error

1E-3}

1E-4

Fig. 5 Maximum absolute numerical error vs. time when problem (14) for y = 1/4 is solved by means
of the fixed step method with A,, = 0.01 (triangles), the T&E method with tolerance 1074 (open circles)
and 1073 (open squares), and the predictive method with @ = 1/2, and tolerance 10~ (solid circles) and
1073 (solid squares). In all cases Ax = /40 and Ag = 0.01

Indeed, this method is both fast and accurate. In the next subsection, we present
another adaptive method, the predictive method, that is as accurate as the T&E
method but a bit faster.

3.2 Predictive method

The adaptive predictive method is also based on the step-doubling technique. The
starting point is to assume that the difference £ scales as a power of the size of the
timesteps:

EM ~ A, (16)

Provided this relationship holds, and from the value of the difference Eéﬁf for a

f;ld, one can easily predict the size of the timestep Aﬁred that leads

to an error equal to the tolerance, Eéfgd = 7, namely,

given timestep A

1/6

APrd — p0ld (17)

One expects that the direct use of this timestep should spare one from wasting
computer time trying to find the right timestep (the one that leads to a difference £
of the order of the tolerance) by means of a blind succession of trials and errors of
the size of the timestep as the T&E method does. This prompts us to propose the
following predictive step-doubling algorithm:

1. If, for the initial value of A,,, the difference satisfies
/2 < &, <21, (18)

then this timestep is accepted.
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2. Otherwise, we employ a new timestep given by the formula

(n)

new __ old T
A=A, |:
old

1/6
} + (1 — ) A (19)

until the corresponding difference Ségv)v satisfies condition (18).

The starting value for A, is just A,_1, and we take Agp = 0.0l in all cases. As
mentioned previously, the particular initial value for A is largely irrelevant because
the above step-doubling algorithm, as does the T&E algorithm, quickly finds the
right timestep Ag. The parameter 0 < w < 1 is a kind of under-relaxation parameter
[8, 21] that affects the speed and robustness of the algorithm. We have found that the
(pure predictive) parameter w = 1 usually leads to the fastest adaptive algorithm (see
Fig. 2). However, in some rare cases, the pure predictive method breaks down because
the choice of the timesteps enters into an infinite loop A¢ — A% — A% ... due to the
fact that their corresponding differences £ never fulfill the (exit) condition (18).
When this happens, we have found that the use of an under-relaxation value (0 <
o < 1) fixes this problem. In particular, we have never found this kind of problem
forw = 1/2.

The predictive method relies on (16) so that it is pertinent to check the validity
of this power-law scaling. Figure 6 shows the values of 6 obtained by fitting £
to (16) for several values of y, number of timesteps n, and values of A,,. Specifi-
cally, we studied how £ scales with the size of the the last timestep A,,, employing
for A, the values mA,_1 and also mA,_1/3 withm = 1,2,...10, with A,,_;
being the size of the previous timestep. The rationale for the choice of these ratios
An/An—1 = m,m/3 is that they are of order of the typical values we find in our
numerical experiments (in fact, these values are usually one half, one or two). The
exponent 6 is always between one and two, which is remarkable if one realizes that

2.0 T T T .
1.8} 4 ]
S P
A 5 = o [ . A
1.6+ ) . ° . . " i i
9 A = o A *
141 * o ° ¢ ]
o
° A
1.2+ ° o i
o
o
1.0 . . . .
0 20 40 60 80
n

Fig. 6 Scaling exponent 6 of the predictive method vs. the number of timesteps when problem (14) is
solved for several values of y (circles: y = 0.25, squares: y = 0.5, triangles: y = 0.75) and A, = mA,_;
(open symbols) and A, = mA,_1/3 (solid symbols) with m = 1,2,...10. The line marks the value
6 =3/2.Inall cases Ax = /80, w =1 and Ag = 0.01
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10

CPU time

0.1 . . :
1E-9 1E-6 1E-3 1 1000

t

Fig. 7 Normalized computational time Tcpy vs. ¢ when problem (14) with y = 1/4 is solved by means
of the T&E method (stars) and the predictive method with 6 = 3/2 (squares), 0 = 5/4 (up triangles), and
6 = 5/3 (circles). In all cases Ax = 7/40,w =1, Ag = 0.0l and 7 = 10~*. The line, of slope 0.2, is a
guide to the eye

the size of A, spans several orders of magnitude, from around 1078 to 10%. As a
simple overall effective value, we always use & = 3/2 in this paper. Of course, this
choice would be questionable if the method were very sensitive to the specific value
of 6. It turns out that this is not the case. Regarding the computational time, Fig. 7
shows that the specific value of 0 is hardly relevant. However, the predictive method
is faster (around three times faster) than the T&E method in this example. Regard-
ing the errors, one sees in Fig. 5 that their behaviour is quite similar to the behaviour
of the errors of the T&E method. For both methods the errors are nicely close to the
prefixed tolerance. In Ref. [22] we provide a MATHEMATICA code where the predic-
tive method is implemented and compared with the T&E method for some of the
examples considered in this paper.

4 Four examples and a further comparison between the T&E and
predictive algorithms
4.1 A problem with a less simple initial condition

The example we consider here is similar to the “testbed” problem of Section 3, that
is, (14) but now with the initial condition

4
u@, 0 == (1-=). (20)
b4 b4
Its exact solution is now less simple:
ad 32
— 2 ;
u(x, 1) = HX_(:) o [~@n+ 1% ] sinfen+ D21 D)
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1.0

Fig. 8 Solution u(x, ) vs. x for the problem of Section 4.1 with y = 1/4 and, from top to bottom,
r=191x1078,tr=319x 1072, =5.12,and t = 1.26 x 10°. The symbols are the numerical solution
by the T&E method (open symbols) and predictive method with @ = 1/2 (solid symbols). In all cases
T =0.001, Ax = /40, Ag = 0.01. The lines are the exact solution (21)

In Figs. 8 and 9 we compare this exact solution with the numerical solutions pro-
vided by the T&E and predictive methods for y = 1/4. In Fig. 8§ we show the full
solution u(x, t) for several times and in Fig. 9 we just show the solution at the middle
point, u(m /2, t), as well as the errors of the two numerical methods. The agreement
is excellent. Due to the fact that the solution of this problem changes very fast for
short times and very slowly for long times, in Fig. 9 we have used a log-log plot
in order to see clearly how this solution evolves for all times. The errors shown
in the inset of Fig. 9 are quite similar to those of the “testbed” problem shown in

0.8
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< .
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Fig.9 Solution and numerical errors (inset) at the midpoint u(s/2, t) vs. ¢ for the problem of Section 4.1
with y = 1/4. The symbols are the numerical solution by the T&E method (open symbols) and predictive
method with @ = 1/2 (solid symbols). In all cases T = 0.001, Ax = 7 /40, Ag = 0.01. The line is the
exact solution (21)
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Fig. 5. In fact, Figs. 2—7 would have changed little if the initial condition (20) had
been used.

In Figs. 8 and 9 no results obtained by means of the method with fixed timesteps
are plotted because, in order to get these solutions for long times (say for times
around 10%) employing a reasonable CPU time, one should use large timesteps
(say A, =~ 0.1); otherwise the number of required timesteps would be too large
and impractical (see Table 1). But if timesteps of this size are used, then the evo-
Iution of the solution over a significant range is lost; for example, a timestep
A, = 0.1 would be unable to show how the maximum of the solution u(x, t)
evolves over almost half its range, i.e., from u(w/2,0) = 1 to u(xw/2,0.1) ~ 0.624
(see Fig. 9).

4.2 A problem with a steep source term

A relevant feature of the two adaptive methods we have presented above is that they
can dynamically adapt the size of the timesteps according to the behaviour of the
solution. For example, if at a given time we introduce an external perturbation into the
system, we expect the adaptive method to be able to take care of this through the use
of a temporal mesh suited to the behaviour of the perturbation. In this subsection we
give a clear example of this. The problem we consider is (1) with K = 1, boundary
conditions u (0, t) = u(sm, t) = 0, and the source term

rd 7Y
o) = [1 n &] ar? sinx. 22)
Fl+p—y)
Its exact solution is
u(x, 1) = [Ey(—=1") +at?] sinx. (23)

Here we take a = p = 20 because this leads to a solution with three different time
regimes: the short-time regime where the solution changes very fast, the intermediate
regime (roughly until times a little below ¢ = 1) where the solution changes very
slowly, and a final regime for longer times where again the solution changes very
fast. This case is then a good example with which to test adaptive methods. The
results provided by the T&E method, the predictive method with @ = 1/2, and the
method with fixed timesteps are shown in Fig. 10. Remarkably, we have found that,
in some cases, the pure predictive method (w = 1) breaks down in this example as
described in Section 3.2. For example, for Ag = 0.01, y = 1/4,a = p = 20 and
T = 0.001, we find that the exit condition /2 < £ < t for the predictive method
with @ = 1 never holds at step n = 18 because then the algorithm enters into a

loop with {AZ,E‘E")} — {AZ,E;")} — {AZ,E‘E")} — .- where {AZ,EH(")} -~

(03458,2.723 x 1073} and {ah, &} = {0.1773,3.672 x 107*). Finally, it is
also remarkable the way in which the size of the timesteps of the adaptive methods
changes according to the behaviour of the solution: Fig. 10 shows that for small
times and for times around ¢ = 1 the solution change very fast and then the adaptive
methods tiptoe in these regions keeping the numerical errors small; however, for
intermediate times the solution changes very slowly, and the adaptive methods react
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u(0,1)
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0.0 0.2 0.4 0.6 0.8

Fig. 10 Solution and numerical errors (inset) at the midpoint u(r/2, t) of the problem described in the
main text for y = 1/4 and source term (22) with a = p = 20. Solid squares: numerical method with
A, = 0.01; circles: T&E method with tolerance t = 10_3; open squares: predictive method with T =
1073 and @ = 1/2; line: exact solution. In all cases Ax = /40 and Ag = 0.01

by making large strides, thus going fast forward in time although not at the expense
of increasing the numerical errors.

4.3 A problem with a quasi-periodic source term

Adaptive methods are specially advantageous for problems with solutions having
quite different time scales. If this is not the case, then, apart from being able to
roughly pre-set their accuracy, adaptive methods are not much faster than fixed
timestep algorithms. In fact, they might be even slower due to the constant com-
putational overload of the continuous searching of nonexistent better (or marginally
better) timestep sizes. Here we present an example of this. The problem we consider
now is (1) with K = 1, boundary conditions u(0, t) = u(x, t) = 0, and source term

f(x,t)=a [sin(vt) + v? sin (vt + yn/Z)] sin x. 24)
Its exact solution is
u(x, 1) =[Ey(—=1") + asin(vt)] sinx. (25)

Its temporal part is the sum of E, (—t"), a function that, for small y, changes fast
for short times and is almost constant for long times, and a sin v¢, a periodic func-
tion. This implies that, except for very short times, one does not expect the adaptive
algorithms to be better than the plain fixed timestep algorithm. In Fig. 11 the solution
provided by the T&E method, the predictive method with @ = 1/2, and the method
with fixed timesteps with A, = 0.1 for the case with v = 27w and a = 1/10 is shown.
One sees that the size of the timesteps employed by the adaptive methods is almost
constant (around 0.1) when the solution is almost periodic. In other words, the best
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u(0,7)

Fig. 11 Solution at the midpoint u (7 /2, t) vs. time of the problem described in the main text for y = 1/4
and source term (24) with v = 2 and a = 1/10. Solid squares: numerical method with A, = 0.1; circles:
T&E method with tolerance T = 1073; open squares: predictive method with T = 1073 and w = 1/2;
line: exact solution. In all cases Ax = 7/40 and Ay = 0.01. Inset: detail of the solution u(w/2,t) for
short times

option in this case is to use a fixed timestep. This is what the adaptive methods do,
but only after trying to find a better size in every new timestep and find out that the
right size hardly changes. On the other hand, the inset of Fig. 11 shows again that the
two adaptive methods are excellent when the solution changes fast.

4.4 A problem with non-homogeneous boundary conditions

We want to find the density profile at any time of a set of continuous-time random
walkers moving in a one-dimensional finite medium, initially void of walkers, when
there is a reservoir of walkers at one end of the medium (so that their concentration
is constant there) and they are completely removed from the system at the other
end. In mathematical terms, the problem we have to solve then is given by (1) with
0 < x < L, boundary conditions u(0, t) = ug, u(L,t) = 0, and initial condition
u(x, 0) = 0. The exact solution can be obtained by solving the problem in the Laplace
space, or directly by means of the method of images [17]:

U 1, /2 U 1, /2
lK%t)=uo§:1ﬂ% mze +z O’¥ —uo§:fﬁ& Mmze —2 0’¥
m=0 ’ m=1 ’

(26)

with M — oo, and where 7z = x/(KtV)l/z, Ze = 2L/(KtV)1/2, and Hllo1 is a Fox H
function [17, 24]. When y = 1, the Fox function becomes the complementary error
function Hllo1 [z ‘(1),}/2] = erfc(z/2), and the classical solution [25, Eq. (6), p. 310] is

recovered.
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In Fig. 12, we compare the exact solution with the numerical solution obtained
with the T&E and predictive methods. This problem makes clear the immense advan-
tage of adaptive methods over methods with fixed timesteps. In order to find the
solution close to the stationary state, one has to reach times around 10*. Therefore,
in order to get this solution by means of a reasonable number of timesteps of fixed
size, one has to use large timesteps, let us say 10* timesteps of size A, = 1, which
means that all the changes of the system from ¢t = Quptor = A, = 1 would be
overlooked. In our case, see Fig. 12, this would mean overlooking a time interval in
which substantial and relevant changes in the solution occurs. In other words, Fig. 12
shows that, in order to conveniently track the solution from the initial condition to the
stationary state, one has to employ times that span twelve orders of magnitude (from
t ~ 1078 to t ~ 10%). No computer employing finite difference methods with fixed
timesteps can handle this problem in a reasonable computation time.

4.5 A further comparison of the speed of the T&E and predictive methods

A different way of checking the efficiency of the adaptive methods is counting the
number of times M that the system (10) has to be generated and solved in order to get
the solution u(x, t) at time ¢. The evaluation and solution of system (10) for increas-
ing values of the time f, is what makes these finite difference methods increasingly
slow. Therefore, the smaller the number M required to get the solution for a given
time, the better. Note that every time an adaptive algorithm tries a new timestep, this
number increases by one.

In Fig. 13 we show the time # vs. M when the two adaptive methods are employed
to solve the four examples considered in Sections 4.1-4.4. For comparison, the cor-

Fig. 12 Solution u(x, t) vs. x of the problem with nonhomogeneous boundary condition described in the
main text for y = 1/4, K = 1, L = 4, and several values of 7. The lines are the exact solution given
by (26) with M = 8, the open symbols are the numerical solutions obtained by means of the T&E method,
and the solid symbols correspond to the predictive method with @ = 1/2. For both methods 7 = 1073,
The solutions correspond to (from left to right) t = 1.91 x 1078,2.67 x 107#,2.00 x 1072,8.93 x
1071, 2.05 x 10, 2.68 x 10%, 1.14 x 10*. In all cases, Ax = 0.1, 7 = 1073 and Ag = 0.01
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Fig. 13 Number of times M the system (10) has to be solved to get the solution u(x, ) up to time ¢ for
the problem considered in Sections 4.1 (circles), 4.2 (down triangles), 4.3 (up triangles) and 4.4 (squares).
Open symbols: T&E method; solid symbols: predictive method with @ = 1/2. In all cases T = 0.001 and
y = 1/4. The lines represent M for fixed timesteps, M = t/At, with At = 0.01 (solid line) and A = 0.1
(broken line)

responding values M = t/At for fixed timesteps of size A = 0.1 and A = 0.01
are also provided. We see again that the two adaptive methods are far better than the
method with fixed timesteps for the examples considered in Sections 4.1 and 4.4,
two cases where the solution changes very slowly for long times. For the case dis-
cussed in Section 4.3 in which the solution is quasi periodic, the efficiency of the
two adaptive methods is similar to the efficiency of the method with fixed timestep.
This is not unexpected because, as we showed in Section 4.3, the adaptive methods
end choosing almost constant timesteps for the long time regime where the solu-
tion is quasi-periodic. Finally, for the case of Section 4.2 with a steep source term,
the adaptive methods get stuck for times around 1 in order to keep the accuracy of
the numerical solution (see Fig. 10). We see that the convenience of using adaptive
methods depends on the problem one has to solve. Regarding the speed of method,
adaptive methods are not advisable when the rate of change of the solution does not
vary largely along the time interval of integration because, in this case, there is no
need to adapt the size of the timesteps. Finally, Fig. 13 shows that the predictive
method is always faster than the T&E method for the four examples considered in
Sections 4.1-4.4.

5 Summary and conclusions

A major drawback of finite difference methods for fractional equations is that
obtaining the solution for every new timestep is increasingly costly in terms of
computational time. This implies that the number of timesteps required to find a
solution should be as small as posible while keeping a reasonable accuracy in the
numerical solution. In this respect, finite difference methods with homogeneous
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timesteps have the additional drawback that they typically provide numerical results
with quite uneven accuracy (small in some time regions but relatively large in
others).

In order to lessen these two problems, we have proposed the use of adaptive meth-
ods with adaptive timesteps. This kind of method has the great advantage that the size
of the timesteps can be tailored to the behaviour of the solution. For example, one can
choose small timesteps only when the solution is changing rapidly in order to keep
the accuracy of the method and to track down the relevant features of the solution at
these time scales. On the other hand, one can choose large timesteps if the solution
changes slowly. In this way, without losing accuracy, the method can advance with
large strides when feasible so that long times can be reached.

We have studied two different adaptive methods. Both employ an integration
algorithm based on the L1 discretization of the Caputo fractional derivative with
non-homogeneous timesteps, but differ in their adaptive algorithm, i.e., in the way
in which the size of every timestep is determined. Both methods are fast (immensely
faster than the corresponding non-adaptive method with fixed timesteps in some
cases) and provide solutions with an accuracy that, to a large extent, is consistent
throughout the integration time interval. Remarkably, this accuracy can be pre-set
at will through setting up a kind of self-consistent parameter (the tolerance) that
is, in many cases, an excellent indicator of the final accuracy of the numerical
solution.
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through Grant No. FIS2013-42840-P (partially financed by FEDER funds) and by the Junta de
Extremadura through Grant. No. GR15104.

Appendix

We have seen that the tolerance we set in the adaptive methods of Section 3 turns
out to be a reasonable indicator of the numerical error (see Figs. 5, 9 and 10). In
this appendix we explore this issue from a theoretical perspective. The procedure
and results are somewhat parallel to those of ordinary differential equations [8, 9],

although far more involved.

(n) __
=
lu(xj, ty) — U/(.") |, is bounded by the sum of a term coming from the time discretiza-

Zhang et al. [15] have shown that the numerical error at point (x;, #,), e

tion, et("j) of the fractional derivative, and a term coming from the space discretization

(n) o () (n) (n)
ey of the Laplacian: e; =e ;te. .

by means of the well-known three-point centered formula so that ei"} = C)(C"; A)z( =

In our case, the Laplacian is discretized

O(Ai), C)(("; being a coefficient that depends on the solution u(x, t) at (x}, t,). The
temporal bound is less simple [15]:

™ =™ max r® =0 ( max r(k)) 27)

t.J ) 1<k<n I<k<n
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where
2 2
o Bk B AT (28)
2(1—y) 8
Amax,k = max Amv (29)
1<m<k

and C ™ isa coefficient, proportional to tV/ that depends on y and on the maximum

value of |82u / 8t2| at x; in the time interval [fg, #,]. From here on we assume that

) o o)

(”) —i—e( ") prov1des an estimate of the error, that is, e; We also assume

that e( 3 is smaller than the tolerance 7 (otherwise the adaptlve method does not work

because no temporal mesh can make the error smaller than 7). Next we define e("j) as
the numerical error when the solution at #,, is computed from the solution at time #,,_{
using two timesteps of size A / 2, that is, e(") is the error when the time discretization

is {to, t1,...,th_1,1,} and & e ) is the corresponding error, e( n _ ‘u(xj, t) — U(")‘

when the discretization is {to, Mooy tnm1, th—1/2, 1y} with t,,,l/z = (ty—1+1tp)/2. 1t
is easy to see from (27)—(29) that

2—y
ORI B
=P \2a =)

() (A2 <A1/2>2—V)
e’~f_0(2<1—y>+ s )

whereas

The difference between these two quantities, e( ) — ¢ is of the same order than

t]’
@

e which means that et(lj). and 5;1) = IUJ(I) — U;l)l are of the same order, too.

In our adaptive methods the size of the timestep A is then chosen so that £1) =
maxg] 5 () 5 (1) is of order of the tolerance, &) ~ 1, where j* denotes the

index (posmon) for which £ is maximum. Next we proceed by induction. Let us
assume that we have evaluated the numerical solutions until time #,_; in such a way
that E™ ~ zform=1,...n — 1, J* being the index for which S;:_l) ~ 1. In this
case, from (27) one sees that

el(flj?* = C;’;) max {et(f’jll) (n b, (")} (30)
or, equivalently,
A2 Al _
n) (n) max,n y
et,"]}k A max Ir, erfk (2(1 _n ) + 3 ) A, } a3n
if one assumes that C ) o/ C (n RESEY Similarly,
NORN [ (An/2? | AR _
et?j* A max {r, Cj'; (2(1 . + S (AJ2)7Y ¢ (32)
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The dlfference between these two quantities, et( /) N t( /) , 18 then of the same order
than el ¥ *, which means that et("j) . and 5 @) |Uj(") U @) .. | are of the same order, too.

We then choose A, so that 51(.:) is of order of the tolerance. In the previous reasoning
we have assumed implicitly that j* for timestep n — 1, j* _,, is the same than for
timestep n, j, . Of course, although the value of j* may change (typically j; = j*_

and sometimes j; = j*_, £ 1), we still expect that 5 "~ 5 W~ provided that
In—1

u(xx , ty) is similar to u(xx, t,).
n—1 n
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