The Set of First-Order Differential Equations
with Periodic or Bounded Solutions

JOSE L. BRAVO¹, MANUEL FERNÁNDEZ¹,* , ANTONIO TINEO²,**

¹Departamento de Matemáticas, Universidad de Extremadura, 06071-Badajoz, Spain
²Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes,
5101-Mérida, Venezuela
e-mail: joseluisb@wanadoo.es, ghierro@unex.es, atineo@ciens.ula.ve

(Research announcement presented by Jesús M.F. Castillo)

AMS Subject Class. (2000): 34D05
Received January 11, 2001

The objective of this note is the announcement of two results of Ambrosetti-Prodi type concerning the existence of periodic (respectively bounded) solutions of the first order differential equation \(x' = f(t, x) \)

1. Periodic solutions

Let us fix a real number \(T > 0 \) and define \(\mathcal{C} \) as the set of all continuous functions \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) such that:

- \(A_1 \) \(f(t, x) \) is \(T \)-periodic in \(t \).
- \(A_2 \) \(f(t, x) \) is locally Lipschitz continuous in \(x \).
- \(A_3 \) \(f(t, x) \) is concave in \(x \) and there exists \(t_0 = t_0(f) \in \mathbb{R} \) such that \(f(t_0, x) \) is strictly concave in \(x \).
- \(A_4 \) \(\lim_{|x| \to \infty} f(t, x) = -\infty \) uniformly on \(t \in \mathbb{R} \).

In \(\mathcal{C} \) we shall consider the topology of uniform convergence on compact sets. We also define \(\mathcal{C}_0 \) as the subset of \(\mathcal{C} \) consisting of all points \(f \) such that the equation

\[
x' = f(t, x)
\]

has a unique \(T \)-periodic solution.

*Partially supported by D.G.E.S. PB96-1462
**Partially supported by CDCHT, Universidad de los Andes

293
Theorem 1. The map \(H : C_0 \times \mathbb{R} \to C, \) \(H(g, a) = g + a, \) is a homeomorphism onto \(C. \) Moreover, if \(f \in H(C_0 \times (-\infty, 0)) \) (resp. \(f \in H(C_0 \times (0, \infty)) \)) then, Eq. (1) has exactly two (resp. zero) \(T \)-periodic solutions.

To prove Theorem 1 we first use the arguments in [1] to obtain for every \(f \in C \) the existence of a (unique) real number \(\lambda_0(f) \) such that equation
\[
x' = f(t, x) + \lambda
\]
has exactly zero, one or two \(T \)-periodic solutions according to \(\lambda < \lambda_0, \lambda = \lambda_0 \) or \(\lambda > \lambda_0. \) Thus we prove that \(\lambda_0(f) \) depends continuously on \(f, \) with respect to the topology of the uniform convergence on compact sets.

Theorem 2. Let \(X \subset C \) be an affine manifold such that \(X + \mathbb{R} = X. \) Then \(X_0 := X \cap C_0 \) is the graph of a continuous function \(\mu : F \to \mathbb{R}, \) defined on a closed hyperplane \(F \) of \(X. \)

2. Bounded separated solutions

Let \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) be a continuous function. We say that \(f \) is \(s \)-concave in \(x \) if given \(R, \epsilon > 0, \) there exists a continuous function \(b : \mathbb{R} \to [0, \infty) \) such that \(A_L(b) > 0 \) and
\[
f(t, (1 - \lambda)x + \lambda y) \geq (1 - \lambda)f(t, x) + \lambda f(t, y) + \lambda(1 - \lambda)b(t)
\]
if \(|x - y| \geq \epsilon, \) \(|x|, |y| \leq R, \) \(\lambda \in [0, 1], \) and \(t \in \mathbb{R}. \)

Here \(A_L(b) \) denotes the lower average of \(b \) in the sense of [2]. That is,
\[
A_L(b) = \lim_{r \to +\infty} \inf \left\{ \frac{1}{t-s} \int_s^t b(\tau) \, d\tau : t - s \geq r \right\}.
\]

We say that \(f \) is locally equicontinuous in \(x \) if for each compact set \(K \) of \(\mathbb{R} \) and each \(\epsilon > 0 \) there exists \(\delta > 0 \) such that
\[
|f(t, x) - f(t, y)| \leq \epsilon \quad \text{if} \quad t \in \mathbb{R}, \ x, y \in K, \ |x - y| \leq \delta.
\]

We define \(D \) as the subset of all continuous functions \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) such that:

\(H_1 \) \(f \) is locally equicontinuous in \(x \) and bounded on \(\mathbb{R} \times K \) for any compact subset \(K \) of \(\mathbb{R}. \)

\(H_2 \) \(f(t, x) \) is locally Lipschitz continuous in \(x. \)
H_3) $f(t, x)$ is s-concave in x.

H_4) $\lim_{|x| \to \infty} f(t, x) = -\infty$ uniformly on $t \in \mathbb{R}$.

We define \mathcal{D}_+ (resp. \mathcal{D}_-) as the subset of \mathcal{D} consisting of all points f such that the equation

$$x' = f(t, x) \quad (5)$$

has two (resp. zero) bounded solutions $u_0 < u_1$ and $\inf(u_1 - u_0) > 0$. We also define \mathcal{D}_0 as the subset of \mathcal{D} consisting of all points f such that Eq. (5) has a bounded solution and $\inf(|u - v|) = 0$ if u, v are bounded solutions of this equation.

Theorem 3. Theorems 1 and 2 remain true if we replace \mathcal{C} by \mathcal{D}.

The proof uses theorem 3.7 of [3] that with this notation can be stated as follows:

Let $f \in \mathcal{D}$. Then there exists $\lambda_0 = \lambda_0(f)$ such that $f + \lambda \in \mathcal{D}_+$ for all $\lambda > \lambda_0$, $f + \lambda_0 \in \mathcal{D}_0$ and $f + \lambda \in \mathcal{D}_-$ for all $\lambda < \lambda_0$.

References

