Fix-Finite Approximation Property
in Normed Vector Spaces

ABDELKADER STOUTI

Département de Mathématiques, Faculté des Sciences et Techniques,
Université Cadi Ayyad, B.P. 523 Béni-Mellal, Maroc

e-mail: stouti@yahoo.com

(Research paper presented by J.P. Moreno)

AMS Subject Class. (2000): 46A55, 52A07, 54H25

Received November 22, 2000

1. Introduction

Let D and A be two nonempty subsets in a metric space. We say that the pair (D, A) satisfies the fix-finite approximation property (in short F.F.A.P.) for a family F of maps (or multifunctions) from D to A, if for every $f \in F$ and all $\varepsilon > 0$ there exists $g \in F$ which is ε-near to f and has only a finite number of fixed points. In the particular case where $D = A$, we say that A satisfies the F.F.A.P. for F.

In this paper we study the fix-finite approximation property in normed vector spaces. We work with the pair (D, A) such that A satisfies the Schauder condition.

If x is a point of a normed space X and $r > 0$, then we denote by $B(x, r)$ the open ball of radius r and center x. A subset K of X is said to be relatively compact if its closure \overline{K} is compact. The convex hull of a subset $\{x_1, \ldots, x_n\}$ of X is defined by

$$\text{conv} \{x_1, \ldots, x_n\} = \left\{ \sum_{i=1}^{n} \alpha_i x_i : \alpha_i \in [0, 1] \text{ for } i = 1, \ldots, n \text{ and } \sum_{i=1}^{n} \alpha_i = 1 \right\}.$$
A subset A of a normed space X is said to enjoy the Schauder condition if for any nonempty relatively compact subset K of A and every $\varepsilon > 0$ there exists a finite cover \(\{ B(x_i, \eta_{x_i}) : x_i \in A, 0 < \eta_{x_i} < \varepsilon, i = 1, \ldots, n \} \) of K such that for any subset \(\{ x_{i_1}, \ldots, x_{i_k} \} \) of \(\{ x_1, \ldots, x_n \} \) with \[
\bigcap_{j=1}^{k} B(x_{i_j}, \eta_{x_{i_j}}) \cap K \neq \emptyset
\] the convex hull of \(\{ x_{i_1}, \ldots, x_{i_k} \} \) is contained in A.

For example, any nonempty convex subset of a normed space X and any open subset of X satisfies the Schauder condition (see [6]). Also, all finite-union of closed convex subsets of a Banach space satisfies the Schauder condition (see [1]).

In the present work we first establish the following result (Theorem 3.1): if A is a nonempty subset of a normed space X satisfying the Schauder condition and D is a compact subset of X containing A, then the pair (D, A) satisfies the F.F.A.P. for any n-function.

Secondly we prove (Theorem 3.2): if A is a nonempty subset of a normed space X satisfying the Schauder condition and D is a path and simply connected compact subset of X containing A, then the pair (D, A) satisfies the F.F.A.P. for any n-valued continuous multifunction. As consequence we obtain a generalization of the Schrimer’s result [5, Theorem 4.6].

2. Preliminaries

In this section we recall some definitions for subsequent use.

Let X and Y be two Hausdorff topological spaces. A multifunction $F : X \to Y$ is a map from X into the set 2^Y of nonempty subsets of Y. The range of F is $F(X) = \cup_{x \in X} F(x)$.

The multifunction $F : X \to Y$ is said to be upper semi-continuous (usc) if for each open subset V of Y with $F(x) \subset V$ there exists an open subset U of X with $x \in U$ and $F(U) \subset V$.

The multifunction $F : X \to Y$ is called lower semi-continuous (lsc) if for every $x \in X$ and open subset V of Y with $F(x) \cap V \neq \emptyset$ there exists an open subset U of X with $x \in U$ and $F(x') \cap V \neq \emptyset$ for all $x' \in U$.

The multifunction $F : X \to Y$ is continuous if it is both upper semi-continuous and lower semi-continuous.

The multifunction F is compact if it is continuous and the closure of its range $\overline{F(X)}$ is a compact subset of Y.
A point \(x \) of \(X \) is said to be a fixed point of a multifunction \(F : X \to Y \) if \(x \in F(x) \). We denote by \(\text{Fix}(F) \) the set of all fixed points of \(F \).

Let \(X \) and \(Y \) be two normed spaces. We denote by \(C(X) \) the set of nonempty compact subsets of \(X \). Let \(A \) and \(B \) be two elements of \(C(X) \). The Hausdorff distance between \(A \) and \(B \), \(d_H(A, B) \), is defined by setting:

\[
d_H(A, B) = \max \{ \rho(A, B), \rho(B, A) \}
\]

where

\[
\rho(A, B) = \sup \{ d(x, B) : x \in A \},
\]

\[
\rho(B, A) = \sup \{ d(y, A) : y \in B \}
\]

and

\[
d(x, B) = \inf \{ \| y - x \| : y \in B \}.
\]

Let \(F \) and \(G \) be two compact multifunctions from \(X \) to \(Y \). We define the Hausdorff distance between \(F \) and \(G \) by setting:

\[
d_H(F, G) = \sup \{ d_H(F(x), G(x)) : x \in X \}.
\]

Let \(\varepsilon > 0 \) and \(F \) and \(G \) be two compact multifunctions from \(X \) to \(Y \). We say that \(F \) and \(G \) are \(\varepsilon \)-near if \(d_H(F, G) < \varepsilon \).

3. Fix-finite approximation property

3.1. Fix-finite approximation property for \(n \)-functions. In this subsection we study the fix-finite approximation property for \(n \)-functions. First, we recall the definition of an \(n \)-function.

Definition 3.1. Let \(X \) and \(Y \) be two Hausdorff topological spaces. A multifunction \(F : X \to Y \) is said to be an \(n \)-function if there exist \(n \) continuous maps \(f_i : X \to Y \), where \(i = 1, \ldots, n \), such that \(F(x) = \{ f_1(x), \ldots, f_n(x) \} \) for all \(x \in X \) and \(f_i(x) \neq f_j(x) \) for all \(x \in X \) and \(i, j = 1, \ldots, n \) with \(i \neq j \).

In this subsection we shall prove the following:

Theorem 3.1. Let \(A \) be a nonempty subset of a normed space \(X \) satisfying the Schauder condition. If \(D \) is a compact subset of \(X \) containing \(A \), then the pair \((D, A) \) satisfies the F.F.A.P. for any \(n \)-function \(F : D \to A \).

In order to prove Theorem 3.1, we shall need the following lemmas.
Lemma 3.1. If a nonempty subset A of a normed space X satisfies the Schauder condition, then for any relatively compact subset K of A and every $\varepsilon > 0$ there exist a finite polyhedron P contained in A and a continuous map $\pi : K \to P$ such that $\|\pi(x) - x\| < \varepsilon$ for all $x \in K$.

Proof. Let $\varepsilon > 0$ and K be a nonempty relatively compact subset of A. Since A satisfies the Schauder condition, then there exists a finite cover $\{B(x_i, \eta_{x_i}) : x_i \in A, 0 < \eta_{x_i} < \varepsilon, i = 1, \ldots, n\}$ of K such that for all subset $\{x_{i_1}, \ldots, x_{i_k}\}$ of $\{x_1, \ldots, x_n\}$ with $\bigcap_{j=1}^k B(x_{i_j}, \eta_{x_{i_j}}) \cap K \neq \emptyset$ the convex hull of $\{x_{i_1}, \ldots, x_{i_k}\}$ is contained in A.

For all $i = 1, \ldots, n$, let μ_i be the continuous function defined by $\mu_i(x) = \max(0, \eta_{x_i} - \|x - x_i\|)$, for all $x \in K$. Since for all $x \in K$ there exists $i \in \{1, \ldots, n\}$ such that $\|x - x_i\| < \eta_{x_i}$, then $\sum_{i=1}^n \mu_i(x) > 0$. Now we can define a continuous function α_i on K by setting:

$$\alpha_i(x) = \frac{\mu_i(x)}{\sum_{i=1}^n \mu_i(x)}, \quad i = 1, \ldots, n,$$

for all $x \in K$.

Let

$$Q = \left\{\{x_{i_1}, \ldots, x_{i_k}\} \subset \{x_1, \ldots, x_n\} : \bigcap_{j=1}^k B(x_{i_j}, \eta_{x_{i_j}}) \cap K \neq \emptyset\right\}$$

and

$$P = \bigcup_{\{x_{i_1}, \ldots, x_{i_k}\} \in Q} \text{conv}\{x_{i_1}, \ldots, x_{i_k}\}.$$

Let π be the map from K to P defined by $\pi(x) = \sum_{i=1}^n \alpha_i(x)x_i$, for all $x \in K$. Then, the map π is continuous and satisfies the property $\|\pi(x) - x\| < \varepsilon$ for all $x \in K$. \[\square\]

In [6] we introduced the notion of Hopf spaces. These are metric spaces satisfying the F.F.A.P. for any compact self-map. By using [6, Theorem 1.3] and the Schauder condition we obtain the following lemma.

Lemma 3.2. Let A be a nonempty subset of a normed space X satisfying the Schauder condition. If D is a compact subset of X containing A, then for all continuous map $f : D \to A$ and for every $\varepsilon > 0$, there exist a finite polyhedron P contained in A and a continuous map $g : D \to P$ which is ε-near to f and has only a finite number of fixed points. In particular every nonempty compact subset of a normed space satisfying the Schauder condition is a Hopf space.
Proof. Since \(f(D) \) is a relatively compact subset of \(A \), then by Lemma 3.1 for a given \(\varepsilon > 0 \), there exist a finite polyhedron \(P \) contained in \(A \) and a continuous map \(\pi_\varepsilon : f(D) \to P \) such that \(\|\pi_\varepsilon(y) - y\| < \frac{1}{2}\varepsilon \), for all \(y \in f(D) \). Set \(f_\varepsilon = \pi_\varepsilon \circ f \), then the map \(f_\varepsilon : D \to P \) is continuous and satisfies \(\|f_\varepsilon(x) - f(x)\| < \frac{1}{2}\varepsilon \), for all \(x \in D \).

By [6, Theorem 1.3] there exists a continuous map \(g : D \to P \) which is \(\frac{1}{2}\varepsilon \)-near to \(f_\varepsilon \) and has only a finite number of fixed points. Then, the map \(g \) is \(\varepsilon \)-near to \(f \) because for all \(x \in D \), we have:

\[
\|f(x) - g(x)\| \leq \|f(x) - f_\varepsilon(x)\| + \|f_\varepsilon(x) - g(x)\| < \varepsilon.
\]

Proof of Theorem 3.1. Let \(\varepsilon > 0 \) and \(F : D \to A \) be an \(n \)-function. Then, there exist \(n \) continuous maps \(f_i : D \to A \) such that \(F(x) = \{f_1(x), \ldots, f_n(x)\} \) for all \(x \in D \) and \(f_i(x) \neq f_j(x) \) for all \(x \in D \) and \(i, j = 1, \ldots, n \) with \(i \neq j \).

For all \(i, j = 1, \ldots, n \) with \(i \neq j \), we define \(\delta_{i,j}(F) = \min\{\|f_i(x) - f_j(x)\| : x \in D\} \). As each \(f_i \) is continuous for all \(i = 1, \ldots, n \) and \(D \) is compact, then for each \(i, j = 1, \ldots, n \) with \(i \neq j \), we have \(\delta_{i,j}(F) > 0 \). Therefore,

\[
\delta(F) = \min\{\delta_{i,j}(F) : i, j = 1, \ldots, n, \ i \neq j\} > 0.
\]

For a given \(\varepsilon > 0 \), we set \(\lambda = \min\{\frac{1}{2}\delta(F), \frac{1}{2}\varepsilon\} \). By Lemma 3.2, for each \(i = 1, \ldots, n \), there exists a map \(g_i : D \to A \) which is \(\lambda \)-near to \(f_i \) and has only a finite number of fixed points. Let \(G : D \to A \) be the multifunction defined by \(G(x) = \{g_1(x), \ldots, g_n(x)\} \), for all \(x \in D \).

Claim 1. The multifunction \(G \) is an \(n \)-function. Indeed, if there exists \(x_0 \in D \) and \(i, j = 1, \ldots, n \) with \(i \neq j \), such that \(g_i(x_0) = g_j(x_0) \), then,

\[
\|f_i(x_0) - f_j(x_0)\| \leq \|f_i(x_0) - g_i(x_0)\| + \|f_j(x_0) - g_j(x_0)\| < 2\lambda.
\]

Therefore, \(\delta_{i,j}(F) < \delta(F) \). This is a contradiction and our claim is proved.

Claim 2. The multifunction \(G \) is \(\varepsilon \)-near to \(F \). Indeed, for all \(i = 1, \ldots, n \) and for every \(x \in D \), we have, \(\|f_i(x) - g_i(x)\| < \frac{1}{2}\varepsilon \). Then, \(d_H(F, G) < \varepsilon \).

Claim 3. The multifunction \(G \) has only a finite number of fixed points. Indeed, \(\text{Fix}(G) = \bigcup_{i=1}^m \text{Fix}(g_i) \) and for all \(i = 1, \ldots, n \) the maps \(g_i \) has only a finite number of fixed points.

Corollary 3.1. Let \(C_i \), for \(i = 1, \ldots, m \), be a finite family of nonempty convex compact subsets of a normed space, then \(\bigcup_{i=1}^m C_i \) satisfies the F.F.A.P. for any \(n \)-function \(F : \bigcup_{i=1}^m C_i \to \bigcup_{i=1}^m C_i \).
3.2. Fix-finite approximation property for n-valued continuous multifunctions. To start this subsection, we give the definition of an n-valued multifunction.

Definition 3.2. Let X and Y be two Hausdorff topological spaces. A multifunction $F : X \rightarrow Y$ is said to be n-valued if for all $x \in X$, the subset $F(x)$ of Y consists of n points.

Now we recall the definition of the gap of a n-valued multifunction. Let X and Y be two Hausdorff topological spaces and let $F : X \rightarrow Y$ be a n-valued continuous multifunction. Then, we can write $F(x) = \{y_1, \ldots, y_n\}$ for all $x \in X$. We define a real function γ on X by

$$\gamma(x) = \inf\{\|y_i - y_j\| : y_i, y_j \in F(x), i, j = 1, \ldots, n, i \neq j\},$$

for all $x \in X$, and the gap of F by

$$\gamma(F) = \inf\{\gamma(x) : x \in X\}.$$

Since the multifunction F is continuous then the function γ is also continuous [5, p.76]. If X is compact, then $\gamma(F) > 0$.

In this subsection we show the following:

Theorem 3.2. Let A be a nonempty subset of a normed space X satisfying the Schauder condition. If D is a path and simply connected compact subset of X containing A, then the pair (D, A) satisfies the F.F.A.P. for any n-valued continuous multifunction $F : D \rightarrow A$.

We recall the following Lemma due to H. Schrimer [5] which is useful for the proof of our result.

Lemma 3.3. Let X and Y be two compact Hausdorff topological spaces. If X is path and simply connected and $F : X \rightarrow Y$ is a n-valued continuous multifunction, then F is an n-function.

Proof of Theorem 3.2. Let $\varepsilon > 0$ and $F : D \rightarrow A$ be a n-valued continuous multifunction. Then, $\gamma(F) > 0$ and $\lambda = \min\{\frac{1}{4}\varepsilon : \frac{1}{2}\gamma(F)\} > 0$. By Lemma 3.1 there exist a finite polyhedron P contained in A and a continuous map $\pi : F(D) \rightarrow P$ such that $\|\pi(y) - y\| < \lambda$ for all $y \in F(D)$. Now we define a continuous multifunction $G : D \rightarrow P$ by $G(x) = (\pi \circ F)(x)$, for all $x \in D$.

Claim 1. The multifunction G is n-valued and $\frac{1}{2}\varepsilon$-near to F. Indeed, if $x \in D$ such that $F(x) = \{y_1, \ldots, y_n\}$, then $G(x) = \{\pi(y_1), \ldots, \pi(y_n)\}$ with $\|y_i - \pi(y_i)\| < \frac{1}{4}\varepsilon$ for all $i = 1, \ldots, n$.
Claim 2. There exists an n-function $L : D \rightarrow A$ which is ε-near to F and has only a finite number of fixed points. Indeed, from Lemma 3.3 the multifunction $G : D \rightarrow P$ is an n-function and by Theorem 3.1 there exists an n-function $L : D \rightarrow P$ which is $\frac{1}{2}\varepsilon$-near to G and has only a finite number of fixed points. Then, the multifunction $L : D \rightarrow P$ is ε-near to F and has only a finite number of fixed points.

As a consequence of Theorem 3.1 and Theorem 3.2 we obtain the following:

Corollary 3.2. Let C_i, for $i = 1, \ldots, m$, be a finite family of nonempty convex compact subsets of a normed space such that $\cap_{i=1}^{m} C_i \neq \emptyset$ or $C_i \cap C_j = \emptyset$ for $i \neq j$, then $\cup_{i=1}^{m} C_i$ satisfies the F.F.A.P. for any n-valued continuous multifunction $F : \cup_{i=1}^{m} C_i \rightarrow \cup_{i=1}^{m} C_i$.

Proof. Let $\varepsilon > 0$ and $F : \cup_{i=1}^{m} C_i \rightarrow \cup_{i=1}^{m} C_i$ be a n-valued continuous multifunction. For the proof we distinguish the following two cases.

First Case. $C_i \cap C_j = \emptyset$ for $i, j = 1, \ldots, m$ and $i \neq j$. We have, $F|_{C_i} : C_i \rightarrow \cup_{i=1}^{m} C_i$ is an n-function for $i = 1, \ldots, m$. From Lemma 3.3, the multifunction $F|_{C_i}$ is a n-function for $i = 1, \ldots, m$. Therefore, for each $i \in \{1, \ldots, m\}$, there exist n continuous maps $f_{ij} : C_i \rightarrow \cup_{i=1}^{m} C_i$ such that $F(x) = \{f_{i1}(x), \ldots, f_{in}(x)\}$ for all $x \in C_i$. Now for each $j \in \{1, \ldots, n\}$ we can define a continuous map $h_j : \cup_{i=1}^{m} C_i \rightarrow \cup_{i=1}^{m} C_i$ by $h_j(x) = f_{ij}(x)$ if $x \in C_i$. It follows that for all $x \in \cup_{i=1}^{m} C_i$, we have $F(x) = \{h_1(x), \ldots, h_n(x)\}$. Thus, the multifunction F is an n-function. By Corollary 3.1 there exists a n-multifunction $G : \cup_{i=1}^{m} C_i \rightarrow \cup_{i=1}^{m} C_i$ which is ε-near to F and has only a finite number of fixed points.

Second Case. $\cap_{i=1}^{m} C_i \neq \emptyset$. It follows from Theorem 3.2 that $\cup_{i=1}^{m} C_i$ satisfies the F.F.A.P. for any n-valued continuous multifunction.

As a particular case of Corollary 3.2 we obtain a generalization of the Schirmer’s result [5, Theorem 4.6].

Corollary 3.3. If C_1 and C_2 are two nonempty convex compact subsets of a normed space, then $C_1 \cup C_2$ satisfies the F.F.A.P. for any n-valued continuous multifunction $F : C_1 \cup C_2 \rightarrow C_1 \cup C_2$.

Acknowledgements

The author is thankful to the learned referee for extremely attentive reading and useful critical remarks to improve the presentation of the paper.
References