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1. Introduction

The most widely used mathematical tools to model the behavior of the
fault-tolerant computer systems are regenerative Markov processes [1], [2],
[10]. Many stationary performance measures of such systems can be written
in an explicit form of the stationary distribution of a Markov process. One
familiarly form of such measures is θ =

∑
s∈E f(s)πs where f is a function of

state such that E[|f(Z)|] =
∑

s∈E |f(s)| πs < ∞, where Z is an irreducible
discrete time Markov chain with a finite state space E, and π = (πs)s∈E is its
stationary distribution. For example if F ⊂ E is the subset of nonoperational
states of the system, then θ =

∑
s∈E IF(s)πs, where IA(x) = 1 if x is in set

A and IA(x) = 0 otherwise, is the steady-state unavailability of the system.
Such measure is studied for a large markovian model in [10].

When analytical computation of θ is very difficult or almost impossible, a
Monte Carlo simulation is appealed in order to get estimations. A standard
Monte Carlo simulation algorithm (see [9]) fix a regenerative state s ∈ E
and generate a sample of regenerative cycles from Z: Ci(s), i = 1, . . . , m
that start and finish at s, and then use this sample to construct a likelihood
estimator of πs. In this work, we propose a Monte Carlo algorithm that can
simultaneously simulate all components πs of π. The main idea consists on
extracting all regenerative cycles corresponding to each state s ∈ E from one
long path of Z. The estimation procedure is justified by the fact that all states
can be considered regenerative.
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Since a sample of cycles, used to simulate a component πs in the standard
case, can be viewed as a path containing other regenerative cycles that can
be used to simulate other components πs′ , s 6= s′, then our algorithm, called
(VASD), allows economy in simulation time. The path used by VASD must
contain all states of E. Furthermore since, for a fixed path, we don’t have
the same number of cycles for each state, the estimations of π′ss for which the
number of cycles is small can be less consistent. This problem can relatively
be solved by considering a path in which the rare state is present moderately.
A bootstrapped version of VASD is considered to get consistent estimation
from a short path but containing all states. The paper is organized as follows:
in the section 2, we describe the Markovian model to simulate. In section 3 ,
we present the standard Monte Carlo simulation algorithm. In section 4, we
propose our algorithm VASD. A bootstrapped version of VASD is examined
in section 5. Some numerical illustrations of VASD are proposed in section 6.
The last section is concerned with a conclusion.

2. Markovian model to simulate

Let (Ω,F ,P) be a probability space and consider an irreducible continuous
time Markov chain X = {Xt , t ∈ R+} with finite state space E and transition
rate matrix A = (ai,j). We consider the discrete time Markov chain Z =
{Zn , n ∈ IN} of X which transition matrix P = (pi,j) is defined by

pi,j =
ai,j

| ai,i |I{i6=j}(i, j), i, j ∈ E.

Where |ai,i| :=
∑

i,j∈E ai,jI{i 6=j}(i, j). Other discretization methods can be
found in [8].

Since the process Z is used to model a fault-tolerant computer system,
we assume that Z starts in the perfect state i0 ∈ E (i.e. all components
of the system are operational). It is well known that the simulation of the
Markov steady-state distribution does not depend on the started state. Let
the sequence (τi) defined by

τ0 = inf{n > 0 | Zn = i0},
τi = inf{n > τi−1 | Zn = i0} , i = 1, 2, . . . .

The process Z is regenerative and each τi is a regeneration point for Z. Now we
denote π = (πi)i∈E the stationary probability distribution of X and consider
that a realization or a cycle is a sequence of states which starts at a fixed state,
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for example i0, and finishes when Z becomes to this fixed state. Since E is
finite and X is irreducible, the existence of such realizations is well ensured.
More details for regenerative Markovian processes can be found in [3, 12, 2, 5].
Our focus is concentrated on the simulation of the stationary performance
measures of type θ = E[f(Z)] and more generally the stationary probability
distribution π. For the existence of θ, we assume that E[| f(Z) |] < ∞. To
simulate such measures, it is suitable to use the ratio form of θ given by the
following proposition (see [9]).

Proposition. If
∑

j∈E | f(j) |πj < +∞ then

∑

j∈E

f(j)πj =
E

[∑τ0−1
k=0 f(Zk)h(Zk)

]

E
[∑τ0−1

k=0 h(Zk)
]

where h(i) = 1/|ai,i| is the mean time spent by Z in state i and (Z0, . . . , Zτ0−1)
is the first regenerative cycle of Z relative to the state i0.

The proof, which is based on the regenerative property of Z, is given in [4]
and in annexe A of [9].

3. Standard Monte Carlo simulation

To simulate θ, the classical algorithms consist on fixing a state, say i0, and
generating a sequence Sm(i0) = (C1(i0), . . . , Cm(i0)) of m regenerative cycles
of Z. Each cycle Ck(i0), k = 1, . . . ,m is in the form

Ck(i0) =
(
Z

(k)
0 , . . . , Z

(k)
lk(i0)

)

where P[Z(k)
0 = i0] = 1 and Z

(k)
lk(i0) is the last state generated in the kth cycle

before that Z becomes to the state i0. So lk(i0) is the length of the regenerative
cycle Ck(i0).

Remark. Fixing a state i0 ∈ E can be replaced by generating a state i0 by
a given probability distribution on the state space E. In this case

P[Z0 = i0, Z1 = i1, . . . , Zl = il] = P[Z0 = i0]
l∏

j=1

P[Zj = ij |Zj−1 = ij−1].
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Now, using the last proposition, the measure θ can be estimated by the max-
imum likelihood ratio

rm(θ) =
α

∑m
k=1 G(Ck(i0))

(1− α)
∑m

k=1 H(Ck(i0))
(1)

where α ∈ (0, 1), G(Ck(i0)) =
∑lk(i0)

i=0 f(Z(k)
i )h(Z(k)

i ) and H(Ck(i0)) =∑lk(i0)
i=0 h(Z(k)

i ) The classical estimator rm(θ) is biased. The bias reduction
of the estimator of a ratio is studied in annexe C of [9].

The parameter α in (1) is introduced to control the proportion of realiza-
tions, from the total m, to allocate to the numerator and to the denominator.
Generally, we take α = 1/2, but in some situations, more importance is given
to the numerator than to the denominator by taking for example α = 2/3.
The last choice of α is considered in a variance reduction context, when there
are rare events in the simulation (i.e. there are some states which are rarely
visited by the process Z, see annexe B of [9]).

In this work, we are concerned with the use of the path Sm(i0) to get
estimations for some parameters. In the classical case, this path is used to
simulate a stationary performance of type θ. Our contribution is to use the
same path Sm(i0) not only to simulate θ which is a combination of the com-
ponents of π but to simulate all the vector π directly. We call our procedure
Vectorial Algorithm for Stationary Distribution (VASD).

4. Vectorial algorithm for stationary distribution

The idea of our approach is to look at the sequence of regenerative cycles
Sm(i0) as a path of Z and for each state i ∈ E, we consider the sample of
regenerative cycles Smi(i) = (C1(i), . . . , Cmi(i)), i ∈ E extracted from the
same path Sm(i0). It is important to note that the existence of such cycles
is guaranteed by the fact that each state of the process Z is a regenerative
point. So while a classical procedure fix a state and generates regenerative
cycles relative to this state, our approach is to fix all states and use each
cycle related to each state encountered along the path Sm(i0). This allows to
estimate all the components πi, i ∈ E at the same time. For example if E4
has 4 states denoted as x1, . . . , x4 and if

x1x3x2x1x3x2x3x1x2x1x3x2x1x4x2x3x2x1x3x2x4x1x2x3x4x1
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is a path of Z, the classical procedure, and after fixing state x1 , considers the
following sequence of regenerative cycles

S7(x1) = (x1x3x2, x1x3x2x3, x1x2, x1x3x2,

x1x4x2x3x2, x1x3x2x4, x1x2x3x4)

and the estimation of θ is deduced from these 7 cycles. Our algorithm con-
siders, from the same path, the following samples of regenerative cycles

S7(x1) = (x1x3x2, x1x3x2x3, x1x2, x1x3x2,

x1x4x2x3x2, x1x3x2x4, x1x2x3x4),

S6(x3) = (x3x2x1, x3x2, x3x1x2x1, x3x2x1x4x2, x3x2x1, x3x2x4x1x2),
S7(x2) = (x2x1x3, x2x3x1, x2x1x3, x2x1x4, x2x3, x2x1x3, x2x4x1),

S2(x4) = (x4x2x3x2x1x3x2, x4x1x2x3).

Each sample Smi(xi) is then used to simulate πi, where mi is the number of
regenerative cycles relative to the state xi.
Now, using the last proposition, a classical estimator of the vector π = (πi)i∈E

is then given by
rm(π) = (rmi(πi))i∈E

where

rmi(πi) =
α

∑mi
k=1 G(Ck(i))

(1− α)
∑mi

k=1 H(Ck(i))
, i ∈ E

with α ∈ (0, 1),

G(Ck(i)) =
lk(i)∑

j=1

I{i}(Z
(k)
j )h(Z(k)

j ) and H(Ck(i)) =
lk(i)∑

j=1

h(Z(k)
j )

Remarks. 1. If we have an estimation of π, we can then deduce an estim-
ation of any combination of the components πi, i ∈ E (i.e. we can deduce an
estimation of any measure of type θ).

2. The path considered must contain all states. This can be ensured if the
path contains some regenerative cycles corresponding to the rare state (i.e.
state that have the lower probability to be generated).

Now, for a given path of Z, some states s can have a small number ms of
cycles. Consequently, the estimation of πs can be poor. To solve this problem,
we propose a bootstrapped version BVASD of VASD.
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5. Bootstrapped version of vasd

The bootstrap is a resampling technique that approximates the unknown
probability distribution F of the sample Smi(i) = (C1(i), . . . , Cmi(i)) by the
empirical distribution Fmi that assign the uniform mass 1/mi to each realiz-
ation Ck(i), k = 1, . . . , mi and zero to each cycle which is not in the sample
Smi(i). This technique was initially introduced by Efron in [6] and now is used
in a lot of simulation procedures. This nonparametric and empirical method
allows, in many situations, to give stable estimators. For example, in the
discrimination analysis context, in [7] Efron showed that this technique gives
estimators with variance less than the jackknife method. Efron has defined
this method as another look at the jackknife one (see [6]). It is well known
that the jackknife method is generally used to reduce the estimator bias (see
for example annexe C of [9]).

In our context, using this technique, we consider a bootstrapped sample of
size mi generated from the empirical distribution Fmi . We reiterate this pro-
cedure to obtain BO bootstrapped samples of size mi: S

(1)
mi (i), . . . , S

(BO)
mi (i),

where

S(b)
mi

(i) = (C(b)
1 (i), . . . , C(b)

mi
(i)), b = 1, . . . , BO

C
(b)
k (i) = (Z(b)

k,1, . . . , Z
(b)
k,lk(i)), k = 1, . . . ,mi, b = 1, . . . , BO

with Z
(b)
k,j is the jth state of the kth cycle, relative to the state i, in the

bth bootstrapped sample. An estimator of the vector π under the bootstrap
technique is given by

rboot
m (π) = (r(boot)

mi
(πi))i∈E,

where

r(boot)
mi

(πi) =
1

BO

BO∑

b=1

α
∑mi

k=1 G(C(b)
k (i))

(1− α)
∑mi

k=1 H(C(b)
k (i))

. (2)

Remark that instead of fixing the sizes of bootstrapped samples to mi for a
state i, one can change these sizes in bootstrap iterations.

6. Numerical results

We present two examples of Markovian models to illustrate our algorithm.
The first model is a birth and death process of three states and the second
model is a Markovian process with 16 states. The first (resp. the second)
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model can be used to study the behavior of a fault−tolerant computer system
with two (resp. four) components which can be failed and repaired.

Birth and death process
Consider a birth and death process X which models the behavior of a two

components fault−tolerant computer system. The system is in state 1 if the
two components are operational, the state 2 corresponds to the fact that only
one of the two components is operational, and the system is in state 3 if the
two components are non-operational. The state space E = {1, 2, 3}, and the
transition rate diagram of the process is given in Figure 1.
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Figure 1 : Transition rate diagram of a birth and death process with 3 states.

The parameters λ and µ are the failure and the repair rates respectively.
The transition matrix of Z is P = (pi,j)i,j∈E where pi,i = 0 for i = 1, 2, 3;
p1,2 = p3,2 = 1 and p2,1 = 1− p2,3 = µ/(λ + µ) and the other coefficients of P
are equal to zero. We fix µ = 1 and consider three values of λ: 10−1, 10−2 and
10−3. For each case, we simulate 105000 events for the process Z, where one
event is equivalent to a state transition. The results are summarized in Table
1 as follows: The exact stationary distribution π(exa) is given in column3,
an estimation π(est) of π(exa) is given in column 4, in column 5 we find the
99% confidence interval for each component of π(est), and the last column
is concerned with the number of regenerative cycles used to estimate each
component π

(exa)
i . The approximations used for the construction of confid-

ence intervals can be found in [11]. We remark, for λ = 10−1 for example,
that when the classical algorithms use 47673 cycles by fixing the state 1 (the
cycles are deduced from the 105000 events) to simulate a combination of the
π

(exa)
i ’s, VASD uses the same information (105000 events) to get 47673 cycles

to estimate π
(exa)
1 , 52500 cycles to estimate π

(exa)
2 and 4827 cycles to estimate

π
(exa)
3 . The total number of cycles extracted from 105000 events is then 105000

cycles. This additional information is then used to estimate all components of
π(exa) at the same time. The same remark can be done for the cases λ = 10−2

and λ = 10−3. The mean relative error for λ = 10−1 is 0.0048, which is an
indication for a good estimation. Note that since

∑
i∈E πi = 1, one can only

estimate Card(E)− 1 components.
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λ π(exa) π(est) 99% conf.int. cycles
π1 0.8197 0.8194 0.1011× 10−2 47673

10−1 π2 0.1639 0.1641 0.3848× 10−3 52500
π3 0.1639× 10−1 0.1660× 10−1 0.6237× 10−3 4827
π1 0.9802 0.9802 0.4395× 10−4 51975

10−2 π2 0.1960× 10−1 0.1961× 10−1 0.2130× 10−4 52500
π3 0.1960× 10−3 0.1985× 10−3 0.2092× 10−4 525
π1 0.9980 0.9980 0.1354× 10−5 52452

10−3 π2 0.1996× 10−2 0.1996× 10−2 0.6831× 10−6 52500
π3 0.1996× 10−5 0.1862× 10−5 0.6293× 10−6 48

Table 1: Estimation of π for the model with 3 states.

Fault−tolerant system with 16 states

Consider a fault−tolerant system which is modelled by a continuous time
Markov process X, with the transition rate diagram given in Figure 2.
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Figure 2 : Transition rate diagram of the model with 16 states.

We have E = {1, . . . , 16}. For two states i and j such that i < j, the transition
rate from i to j is a failure rate and the transition rate from j to i is a
repair rate. We assume that all repair rates are equal to µ and all failure
rates between states 1 to 15 are equal to λo; the failure rate from states
12, 13, 14, 15 to state 16 are equal to λf . For two states which are not
related directly by a line in Figure 2, the repair and the failure rates are equal
to zero.

We take µ = 1, λo = 0.5 and λf = 0.1, and we simulate 200000 events for
this model. The results are given in Table 2 in a similar order of Table 1.
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VASD BVASD
π(exa) π(est) 99% conf.int. cycles π(boot) σ(boot) cycles

π1 0.199501 0.199527 0.000026 30537 0.197791 0.008218 4485
π2 0.099751 0.099460 0.001923 19028 0.099341 0.004588 2842
π3 0.099751 0.101729 0.001930 19462 0.096881 0.003368 2769
π4 0.099751 0.098657 0.001915 18872 0.096741 0.004272 2831
π5 0.099751 0.098982 0.001913 18936 0.103449 0.004486 2953
π6 0.049875 0.051469 0.001354 11816 0.051809 0.002801 1755
π7 0.049875 0.049351 0.001329 11327 0.049071 0.002291 1681
π8 0.049875 0.049913 0.001320 11459 0.051972 0.002529 1770
π9 0.049875 0.049955 0.001360 11464 0.048132 0.002230 1653
π10 0.049875 0.049746 0.001354 11418 0.050781 0.003486 1712
π11 0.049875 0.048975 0.001319 11242 0.052626 0.002822 1813
π12 0.024938 0.024986 0.000926 5927 0.024432 0.001215 867
π13 0.024938 0.025330 0.000970 6009 0.025459 0.001422 907
π14 0.024938 0.024756 0.000933 5872 0.025863 0.001305 911
π15 0.024938 0.024851 0.000945 5894 0.026207 0.001501 920
π16 0.002494 0.002412 0.000237 737 0.002827 0.000144 131

Table 2: Estimation of π for the model with 16 states by VASD and BVASD.

We have the same establishments as for the birth and death model. The clas-
sical algorithms use 200000 events to estimate a combination of π

(exa)
i ’s when

VASD exploits the same information (200000 events) to get 200000 cycles for
estimating all the components π

(exa)
i , i = 1, . . . , 16 at the same time. Here

the mean relative error is 0.0105.
Now we consider 30000 events for the same model (16 states). VASD uses

this information to get temporary estimations of the π
(exa)
i ’s. Using these

estimations as a sample of observations and by applying the bootstrap pro-
cedure, we generate 30 bootstrapped samples of sizes 500 for each component
and we use the equation (2), to get estimation π(boot) of π(exa). The boot-
strapped simulation results are given in the three last columns of Table 2,
where σ(boot) is the estimated vector of the standard deviations of components
π

(boot)
i , i = 1, . . . , 16. The mean relative error is 0.0361. We remark that for a

partial information (30000 events), we can get acceptable estimation of π(exa)

with an additional effort (generating 30×500×(Card(E)−1) random number
in [0, 1]) which doesn’t depend on the model parameters directly. The exact
values of π given in this paper, are computed by a Pentium 4 computer using
the Maple V package.
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7. Conclusion

We have proposed a vectorial algorithm VASD to simulate the stationary
probability distribution π of a regenerative Markov process with finite state
space (i.e. vectorial in the sense that it allows to simulate all the vector π at the
same time). When classical Monte Carlo algorithms estimate a combination
of the components of π by using a path of a Markov chain, VASD exploits
the same path to extract additional information to estimate all the vector π
directly. Also we have proposed a bootstrapped version, BVASD, of VASD
which allows to get more information from a more reduced path (a short path)
for simulating π. These propositions are more important if we know only a
path of the Markov chain and the mean holding time of each state. In this
case, VASD and BVASD can be viewed as Monte Carlo approach allowing
economy in simulation time.
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[1] Arlat, J., Méthode et outils pour l’evaluation de la sûreté de fonctionnement
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