A Note on the Range of Generalized Derivation

Mohamed Amouch

Department of Mathematics, Faculty of Science Semlalia, B.O: 2390 Marrakesh, Morocco
e-mail: m.amouch@ucam.ac.ma

(Presented by M. Mbekhta)

AMS Subject Class. (2000): 47A20, 47B30, 47B47

Received June 10, 2006

1. Introduction

Let \(\mathcal{L}(H) \) be the algebra of all bounded linear operators acting on a complex separable and infinite dimensional Hilbert space \(H \). For operators \(A, B \in \mathcal{L}(H) \) we define the generalized derivation \(\delta_{A,B} \) associated with \((A, B) \) by

\[
\delta_{A,B}(X) = AX - XB \quad \text{for} \quad X \in \mathcal{L}(H).
\]

If \(A = B \), then \(\delta_{A,A} = \delta_A \) is called the inner derivation. The theory of derivations has been extensively dealt with in the literature (see for example [1, 2, 3, 5, 6, 7, 8, 9, 10, 16, 17, 18, 20] and [21]).

For a linear operator \(T \) acting on a Banach space \(X \), we denote by \(T^* \), \(\text{Ker } T \) and \(\text{R}(T) \) respectively the adjoint, the kernel and the range of \(T \). Also we denote by \(\text{R}(T) \) and \(\text{R}(T)^\sigma \) respectively the closure of the range of \(T \) respect to the norm topology and the weak operator topology.

In this work we give the extension of the results showed by Williams [21, p. 301] and Ho [13, p. 511] to \(\delta_{A,B} \). We will give some conditions for \(A, B \in \mathcal{L}(H) \) under which

\[
\text{R}(\delta_{A,B})^\tau \cap \text{Ker } \delta^*_A, B^* = \{0\},
\]

where \(\text{R}(\delta_{A,B})^\tau \) denotes closure of \(\text{R}(\delta_{A,B}) \) respect to the norm topology or the weak operator topology.

In section 1, we prove that if \(A \) and \(B \) are isometries (resp. co-isometries) or if \(P(A) \) and \(P(B) \) are normal for some non-trivial polynomial \(P \) with degree \(\leq 2 \), then

\[
\text{R}(\delta_{A,B}) \cap \text{Ker } \delta^*_A, B^* = \{0\}.
\]
Recall [12] that $A \in \mathcal{L}(H)$ is bloc-diagonal if there exists an increasing sequence $\{P_n\}_n$ of self-adjoint projectors of finite rank in $\mathcal{L}(H)$ such that $\lim_{sot} P_n = I$ and $P_nA = AP_n$ for all $n \in \mathbb{N}$, where \lim is the limit respect to the strong operator topology in $\mathcal{L}(H)$.

In section 2, we prove that if A is bloc-diagonal then every positive operator in $\overline{R(\delta A)}$ vanishes. As a consequence of this we obtain that if A is bloc-diagonal then $\overline{R(\delta A,B)} \cap \ker \delta A^*,B^* = \{0\}$ for every $B \in \mathcal{L}(H)$.

2. Conditions under which $\overline{R(\delta A,B)} \cap \ker \delta A^*,B^* = \{0\}$

Let $\mathcal{C}_1(H)$ be the ideal of trace class operators, that is, the set of all compact operators $T \in \mathcal{L}(H)$ for which the eigenvalues of $(T^*T)^{1/2}$ counted according to their multiplicity are summable. The trace function is defined by $\text{Tr}(T) = \sum_{n} \langle Te_n, e_n \rangle$, where (e_n) is any complete orthonormal sequence in H. Recall that the ultraweak continuous linear functionals on $\mathcal{L}(H)$ are those of the form f_T for some $T \in \mathcal{C}_1(H)$ and the weak continuous linear functionals on $\mathcal{L}(H)$ are those of the form f_T, where T is of finite rank.

Lemma 2.1. Let $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ on $H \oplus H$, where $A, B \in \mathcal{L}(H)$. Then we have the following assertions:

i) If $\overline{R(\delta T)} \cap \ker \delta T^* = \{0\}$, then $\overline{R(\delta A,B)} \cap \ker \delta A^*,B^* = \{0\}$;

ii) If $R(\delta T) \cap \ker \delta T^* = \{0\}$, then $R(\delta A,B) \cap \ker \delta A^*,B^* = \{0\}$.

Proof. i) Let $C \in \overline{R(\delta A,B)} \cap \ker \delta A^*,B^*$. Then there exists a sequence $\{X_\alpha\}_\alpha$ of elements of $\mathcal{L}(H)$ such that $\lim_{\tau} AX_\alpha - X_\alpha B = C$ and $A^*C = CB^*$. Let $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, $Y_\alpha = \begin{pmatrix} 0 & X_\alpha \\ 0 & 0 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix}$ on $H \oplus H$. Then

$$\lim_{\tau} TY_\alpha - Y_\alpha T = \lim_{\tau} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} 0 & X_\alpha \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & X_\alpha \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \lim_{\tau} \begin{pmatrix} 0 & AX_\alpha - X_\alpha B \\ 0 & 0 \end{pmatrix}.$$

If $\lim_{\omega} \begin{pmatrix} 0 & AX_\alpha - X_\alpha B \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}$ on $H \oplus H$. Then

$$\left| \left\langle \begin{pmatrix} L_{11} & L_{12} - (AX_\alpha - X_\alpha B) \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} 0 \\ x \end{pmatrix}, \begin{pmatrix} y \\ 0 \end{pmatrix} \right\rangle \right|$$
converges to 0, hence \(| < L_{12} - (AX_\alpha - X_\alpha B) | x, y > | \) converges to 0 for all \(x, y \in H \), which implies that

\[
\lim_\omega AX_\alpha - X_\alpha B = L_{12}.
\]

As the same we prove that

\[
L_{11} = L_{21} = L_{22} = 0.
\]

This implies that

\[
\lim_\omega \begin{pmatrix} 0 & AX_\alpha - X_\alpha B \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \lim_\omega AX_\alpha - X_\alpha B \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix}.
\]

If \(\lim \begin{pmatrix} 0 & AX_\alpha - X_\alpha B \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \) on \(H \oplus H \), then

\[
\left\| \begin{pmatrix} L_{11} & L_{12} - [AX_\alpha - X_\alpha B] \\ L_{21} & L_{22} \end{pmatrix} \right\| \text{ converges to 0,}
\]

hence

\[
\| L_{12} - [AX_\alpha - X_\alpha B] \| \text{ converges to 0 and } L_{11} = L_{21} = L_{22} = 0.
\]

This implies that

\[
\lim \begin{pmatrix} 0 & AX_\alpha - X_\alpha B \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \lim AX_\alpha - X_\alpha B \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix}.
\]

Hence, \(\begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix} = S \in \overline{R(\delta_T)}^\tau \). Since \(ST^* = T^*S \), then \(S \in \overline{R(\delta_T)}^\tau \cap Ker \delta_T^* = \{0\} \). So \(C = 0 \). This completes the proof of i). To prove ii) it suffices to replace \(\overline{R(\delta_T)}^\tau \) with \(R(\delta_T) \).

In the following theorem we give an extension of the result of [21, p. 301] and [13, p. 511] to \(\delta_{A,B} \).
Theorem 2.1. Let $A, B \in \mathcal{L}(H)$. If A and B are isometries (resp. co-isometries) or $P(A)$ and $P(B)$ are normal for some non-trivial polynomial P with degree ≤ 2 then

$$\overline{R(\delta_{A,B})} \cap \text{Ker} \delta_{A^*,B^*} = \{0\}.$$

Proof. i) If A and B are isometries (resp. co-isometries), then $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ is also an isometry (resp. co-isometry) on $\mathcal{L}(H \oplus H)$. By [21, p. 301], we have $\overline{R(\delta_T)} \cap \text{Ker} \delta_{T^*} = \{0\}$. Hence from Lemma 2.1, we conclude that $\overline{R(\delta_{A,B})} \cap \text{Ker} \delta_{A^*,B^*} = \{0\}$.

ii) The result of [13, Theorem 3 (1)] asserts that if $T \in \mathcal{L}(H)$ is such that $P(T)$ is normal for some non-trivial polynomial P with degree ≤ 2, then $\overline{R(\delta_T)} \cap \text{Ker} \delta_{T^*} = \{0\}$. Indeed, suppose that $T^2 - 2\alpha T - \beta = N$ is a normal operator. Let $\lim TX_n - X_nT = S^* \in \overline{R(\delta_T)} \cap \text{Ker} \delta_{T^*}$. Then

$$\lim(N + 2\alpha T)X_n - X_n(N + 2\alpha T) = \lim T^2X_n - X_nT^2 = TS^* + S^*T.$$

This implies that $TS^* + S^*T - 2\alpha S^* \in \overline{R(\delta_N)} \cap \text{Ker} \delta_{N^*}$ so that $TS^* + S^*T - 2\alpha S^* = 0$ by [4, Theorem 1.7]. Hence

$$(S + S^*)(T - \alpha) = (T - \alpha)(S - S^*) \text{ and } (T - \alpha)S^* = -S^*(T - \alpha).$$

The Putnam-Fuglede theorem then gives

$$(S^* + S)(T - \alpha) = (T - \alpha)(S^* - S) \text{ and } (T - \alpha)S = -S(T - \alpha).$$

Combining these equations we get

$$(T - \alpha)(S^* + S) = 0 \text{ and } (S^* + S)(T - \alpha) = 0.$$

Hence $S^*T = TS^*$. Therefore $S^*S \in \overline{R(\delta_T)} \cap \text{Ker} \delta_{T^*}$ so that $S = 0$ by [13, Lemma 3]. Now, if $P(A)$ and $P(B)$ are normal for some non-trivial polynomial P with degree ≤ 2, then $P(T)$ is also normal for $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, hence from the previous result $\overline{R(\delta_T)} \cap \text{Ker} \delta_{T^*} = \{0\}$. From Lemma 2.1, we conclude that $\overline{R(\delta_{A,B})} \cap \text{Ker} \delta_{A^*,B^*} = \{0\}$.

Lemma 2.2. Let \(A, B \in \mathcal{L}(H) \). If \(T \in R(\delta_{A,B})^\tau \cap \text{Ker}\delta_{A^*,B^*} \), then \(T^*T \in R(\delta_B)^\tau \) and \(TT^* \in R(\delta_A)^\tau \).

Proof. If \(T \in R(\delta_{A,B})^\tau \cap \text{Ker}\delta_{A^*,B^*} \), then there exists a sequence \(\{X_\alpha\}_\alpha \) of elements of \(\mathcal{L}(H) \) such that
\[
T = \lim_{\tau} AX_\alpha - X_\alpha A = 0 \quad \text{and} \quad A^*T - TB^* = 0.
\]
Hence
\[
T^*T = \lim_{\tau} T^*AX_\alpha - T^*X_\alpha B = \lim_{\tau} BT^*X_\alpha - T^*X_\alpha B,
\]
and
\[
TT^* = \lim_{\tau} AX_\alpha T^* - X_\alpha BT^* = \lim_{\tau} AX_\alpha T^* - X_\alpha T^*A,
\]
since right multiplication and left multiplication are continuous with respect to the topology \(\tau \).

The following lemma is proved in [19], we need it to prove the next theorem.

Lemma 2.3. Let \(B \in \mathcal{L}(H) \) be a normal operator and \(X \in C_2(H) \) such that \(BX - XB \in C_1(H) \), then \(\text{Tr}(BX - XB) = 0 \).

For the unilateral right shift with a non null weight, we have the following result.

Theorem 2.2. Let \(S \in \mathcal{L}(H) \) be the unilateral right shift with a non null weight \((\alpha_n)_n \); \(\alpha_n \neq 0 \) for all \(n \in \mathbb{N} \) and let \(B \in \mathcal{L}(H) \) be normal. Then \(R(\delta_{S,B}) \cap \text{Ker}\delta_{S^*,B^*} = \{0\} \).

Proof. Let \(T \in R(\delta_{S,B}) \cap \text{Ker}\delta_{S^*,B^*} \). By the same argument as in the proof of Lemma 2.2, we get that \(TT^* \in R(\delta_S) \), hence from [13] \(TT^* \in C_1(H) \). Which is equivalent to \(T \in C_2(H) \). On the other hand \(T^*T = BT^*X - T^*XB \) with \(T^*T \in C_1(H) \), \(T^*X \in C_2(H) \) and \(B \) is normal. Hence by Lemma 2.3, we conclude that \(\text{Tr}(T^*T) = 0 \). Since \(T^*T \) is positive, then \(T = 0 \).

3. Positive operators in \(R(\delta_A)^\omega \)

Definition 3.1. [12] An operator \(A \in \mathcal{L}(H) \) is bloc-diagonal if there exists an increasing sequence \(\{P_n\}_n \) of self-adjoint projectors of finite rank in \(\mathcal{L}(H) \) such that \(\lim_{\text{sot}} P_n = I \) and \(P_nA = AP_n \) for all \(n \in \mathbb{N} \), where \(\lim_{\text{sot}} \) is the limit with respect to the strong operator topology in \(\mathcal{L}(H) \).
Example 1. [12] Let $H = \bigoplus_{n=0}^{\infty} H_n$. If $A = \bigoplus_{n=0}^{\infty} A_n$ where $A_n = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ on \mathbb{C}^2, then A is block-diagonal.

For block-diagonal operators we have the following result.

Theorem 3.1. Let $A \in \mathcal{L}(H)$. If A is block-diagonal then every positive operator in $\overline{R(\delta A)}^\omega$ vanishes.

Proof. Suppose that A is block-diagonal. Then there exists an increasing sequence $\{P_n\}_n$ of self-adjoint projectors of finite rank in $\mathcal{L}(H)$ such that $\lim_{\text{sot}} P_n = I$ and $P_n A = AP_n$ for all $n \in \mathbb{N}$.

Let T a positive operator in $\overline{R(\delta A)}^\omega$, then there exists a sequence $\{X_\alpha\}_\alpha$ in $\mathcal{L}(H)$ such that $T = \lim_{\omega} AX_\alpha - X_\alpha A$. By multiplication right and left by P_n, we obtain

$$P_n TP_n = \lim_{\omega} P_n AX_\alpha P_n - P_n X_\alpha AP_n,$$

since $AP_n = P_n A$, then

$$(*) \quad P_n TP_n = \lim_{\omega} P_n AP_n P_n X_\alpha P_n - P_n X_\alpha P_n P_n AP_n.$$

Since $AP_n = P_n A$ and $A^* P_n = P_n A^*$, then $R(P_n) = H_n$ reduces A. Hence A has the decomposition

$$A = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} \quad \text{on } H = H_n \oplus H_n^\perp.$$

Let $T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$, $X_\alpha = \begin{pmatrix} X_{\alpha}^{11} \\ X_{\alpha}^{12} \\ X_{\alpha}^{21} \\ X_{\alpha}^{22} \end{pmatrix}$ and $P_n = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ on $H = H_n \oplus H_n^\perp$. It follow from (*) that

$$\begin{pmatrix} T_{11} & 0 \\ 0 & 0 \end{pmatrix} = \lim_{\omega} \begin{pmatrix} A_{11} X_{\alpha}^{11} - X_{\alpha}^{11} A_{11} & 0 \\ 0 & 0 \end{pmatrix}.$$

Hence for all $x, y \in H_n$,

$$\left| \left\langle \begin{pmatrix} T_{11} - A_{11} X_{\alpha}^{11} - X_{\alpha}^{11} A_{11} & 0 \\ 0 & 0 \end{pmatrix} \left(\begin{array}{c} x \\ 0 \end{array} \right), \left(\begin{array}{c} y \\ 0 \end{array} \right) \right| \right|$$
converges to 0. This implies that \(\lim A_{11}X_{\alpha}^{11} - X_{\alpha}^{11}A_{11} = T_{11} \), that is \(T_{11} \in R(\delta_{A_{11}}) \). Since dimension of \(H_n \) is finite, then \(T_{11} \in R(\delta_{A_{11}}) \), hence there exists \(Y \in \mathcal{L}(H_n) \) such that \(T_{11} = A_{11}Y - YA_{11} \), which implies that

\[
Tr(T_{11}) = Tr(A_{11}Y) - Tr(YA_{11}) = 0.
\]

Since \(P_n \) is auto-adjoint, then \(P_nTP_n = \begin{pmatrix} T_{11} & 0 \\ 0 & 0 \end{pmatrix} \) is positive, and hence \(T_{11} \) is positive. Since \(Tr(T_{11}) = 0 \), then \(T_{11} = 0 \), and hence \(P_nTP_n = 0 \) for all \(n \in \mathbb{N} \). On the other hand, since

\[
\lim_{sot} P_n = I, \quad \lim_{sot} \|P_nTP_nx - TP_nx\| = 0
\]

and

\[
\lim_{sot} \|TP_nx - Tx\| = \lim_{sot} \|T\|\|P_nx - x\| = 0,
\]

then \(\lim_{sot} P_nTP_n = \lim_{sot} TP_n = \lim_{sot} TP_n = T \). This implies that \(\lim_{sot} P_nTP_n = T \) for all \(n \in \mathbb{N} \). Finally, \(T = 0 \).

As an immediate consequence we have the following corollary:

Corollary 3.1. Let \(A \in \mathcal{L}(H) \). If \(A \) is bloc-diagonal, then

\[
\overline{R(\delta_{A,B})}^{\omega} \cap Ker\delta_{A^*,B^*} = \{0\}
\]

for every \(B \in \mathcal{L}(H) \).

Proof. If \(A \in \mathcal{L}(H) \) is bloc-diagonal and \(T \in \overline{R(\delta_{A,B})}^{\omega} \cap Ker\delta_{A^*,B^*} \), then by Lemma 2.2, \(TT^* \in \overline{R(\delta_A)}^{\omega} \). By Theorem 3.1, we conclude that \(TT^* = 0 \), and hence \(T = 0 \).

Recall [12] that \(A \in \mathcal{L}(H) \) is quasi-diagonal if there exists an increasing sequence \(\{P_n\}_n \) of self-adjoint projectors of finite rank in \(\mathcal{L}(H) \) such that \(\lim_{sot} P_n = I \) and \(\lim_{sot} \|P_nA - AP_n\| = 0 \) for all \(n \in \mathbb{N} \). Every bloc-diagonal operator is quasi-diagonal and the converse is false, see [12]. The following example show that in general Theorem 3.1 does not hold for quasi-diagonal operators.

Example 2. Let \(A = S + S^* \) where \(S \) is the unilateral shift defined by \(Se_n = e_{n+1} \) where \(\{e_n\}_n \) is any complete orthonormal sequence in \(H \). Since \(A \) is self-adjoint, then \(A \) is quasi diagonal [12]. Let \(T = I - SS^* \), then
\[T = (S + S^*)S - S(S + S^*) = AS - SA. \] Hence \(T \in R(\delta_A) \). On the other hand, we have
\[
<Tx, x> = <(I - SS^*)x, x> = \|x\|^2 - \|S^*x\|^2, \quad \text{for all } x \in H.
\]
Since \(\|S^*\| \leq 1 \), then \(<Tx, x> \geq 0 \) for all \(x \in H \). Thus \(T \) is positive. Finally, \(T \) is a non null positive operator in \(R(\delta_A) \).

4. A COMMENT

In [1] (see also [15]) it is shown that every finite rank operator in \(R(\delta_{A,B})^{\ast} \cap Ker\delta_{A^*,B} \) vanishes and every trace class operator in \(R(\delta_{A,B})^{\ast} \cap Ker\delta_{A^*,B} \) vanishes, where \(R(\delta_{A,B})^{\ast} \) is the closure of \(R(\delta_{A,B}) \) with respect to the ultraweak topology \(\omega^* \).

However in [11] (see also [14]) the author ask; if every compact operator in \(R(\delta_{A})^{\ast} \cap \{A^*\} \) is quasinilpotent? A partial answer is given in [1] (see also [14]) if \(A \) or \(A^* \) is dominant and in [10] if \(A \) or \(A^* \) lies in \(U_0 \).

Recall that \(A \in \mathcal{L}(H) \) is dominant if for all \(\lambda \in \mathbb{C} \), there exists a real number \(M_\lambda \geq 1 \) such that \(\|(A - \lambda)x\| \leq M_\lambda\|(A - \lambda)x\| \) and \(A \) lies in \(U_0 \).

Recall that \(A \in \mathcal{L}(H) \) is dominant if for all \(\lambda \in \mathbb{C} \), there exists a real number \(M_\lambda \geq 1 \) such that \(\|(A - \lambda)x\| \leq M_\lambda\|(A - \lambda)x\| \) and \(A \) lies in \(U_0 \).

ACKNOWLEDGEMENTS

The author would like to thank the referee for several helpful suggestions concerning this paper.

REFERENCES

