Substructures of Algebras with Weakly non-Negative Tits Form

J.A. de la Peña, A. Skowroński *

Instituto de Matemáticas, U.N.A.M., Circuito Exterior Ciudad Universitaria 04510, México, D.F. México, jap@matem.unam.mx

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University Chopina 12/18, 87-100, Toruń, Poland, skowron@mat.uni.torun.pl

Received March 5, 2007

Abstract: Let \(A = kQ/I \) be a finite dimensional basic algebra over an algebraically closed field \(k \) presented by its quiver \(Q \) with relations \(I \). A fundamental problem in the representation theory of algebras is to decide whether or not \(A \) is of tame or wild type. In this paper we consider triangular algebras \(A \) whose quiver \(Q \) has no oriented paths. We say that \(A \) is essentially sincere if there is an indecomposable (finite dimensional) \(A \)-module whose support contains all extreme vertices of \(Q \). We prove that if \(A \) is an essentially sincere strongly simply connected algebra with weakly non-negative Tits form and not accepting a convex subcategory which is either representation-infinite tilted algebra of type \(\tilde{E}_p \) or a tubular algebra, then \(A \) is of polynomial growth (hence of tame type).

Key words: tame representation type, essentially sincere module, Tits form, strongly simply connected algebra.

AMS Subject Class. (2000): 16G20, 16G60, 16G70.

Let \(A \) be a finite dimensional algebra (associative with unity) over an algebraically closed field \(k \). We may assume that \(A \) has a presentation \(A \cong kQ/I \) where \(kQ \) is the path algebra of the Gabriel quiver \(Q = Q_A \) of \(A \) and \(I \) is an admissible ideal of \(kQ \). Equivalently, \(A = kQ/I \) may be considered as a \(k \)-category with objects the vertices of \(Q \) and the space of morphism \(A(x, y) \) from \(x \) to \(y \) as the quotient of the space \(kQ(x, y) \), generated by the paths from \(x \) to \(y \), by the subspace \(I(x, y) = kQ(x, y) \cap I \). We denote by \(\mod A \) the category of finite dimensional right \(A \)-modules. For basic background from representation theory of algebras we refer to [1, 4, 22, 23, 24].

From Drozd’s Tame and Wild Dichotomy Theorem [10], algebras may be divided into two disjoint classes: the tame algebras for which indecomposable modules in each dimension occur (up to isomorphism) in a finite number of one-parametric families, and the wild algebras for which the representation

* Partially supported by the Polish Scientific Grant KBN No. 1 P03A 018 27.
theory comprises the representation theories of all algebras. One central question in the modern representation theory of algebras is the determination of the representation type.

Let $A = kQ/I$ be a triangular algebra, that is, Q has no oriented cycles. The Tits form $q_A : \mathbb{Z}^{Q_0} \to \mathbb{Z}$ is the quadratic form defined by

$$q_A(v) = \sum_{i \in Q_0} v(i)^2 - \sum_{i \to j} v(i)v(j) + \sum_{i, j} r(i, j)v(i)v(j),$$

where $r(i, j)$ is the cardinality of $R \cap I(i, j)$ for a minimal set of generators $R \subset \bigcup_{i, j} I(i, j)$ of I. The Tits form plays an important role in the problem of determining the representation type of A. Indeed, if A is representation-finite (that is, A accepts, up to isomorphism, only finitely many indecomposable modules), then q_A is weakly positive, that is, $q_A(v) > 0$ for $0 \neq v \in \mathbb{N}^{Q_0}$ [5]. More generally, if A is tame, then q_A is weakly non-negative, that is, $q_A(v) \geq 0$ for $v \in \mathbb{N}^{Q_0}$ [15]. The converse implications have been shown for important families of algebras, satisfying some rigidity conditions (see for example [5, 6]), or algebras of small homological dimensions [3, 9, 11, 12, 15, 21, 28].

A thoroughly studied class of tame algebras are the strongly simply connected algebras. We recall that A is said to be strongly simply connected if, for every convex subcategory B of A, the first Hochschild cohomology group $H^1(B)$ vanishes, [26]. The modules over polynomial growth strongly simply connected algebras have been completely described [27] (see also [13] and [16]) and the critical tame strongly simply connected algebras of non-polynomial type have been classified [14]. It is a long standing conjecture that a strongly simply connected algebra A is tame if and only if q_A is weakly non-negative. The present paper answers positively the conjecture in a special case, generalizing previous results by the authors [17, 19]. This special case is shown to be essential for the solution of the conjecture as presented in [7].

We say that a strongly simply connected algebra $A = kQ/I$ is essentially sincere if there is an indecomposable (finite dimensional) A-module X whose support $\text{supp} \ X = \{ i \in Q_0 : X(i) \neq 0 \}$ contains all extreme vertices (sinks and sources) of Q. Observe that a strongly simply connected algebra A is tame if and only if every convex subcategory B of A which is essentially sincere is tame. The main result of the paper is the following:

Theorem. Let A be a triangular algebra satisfying the following conditions:

(a) A is essentially sincere strongly simply connected;
(b) q_A is weakly non-negative;

(c) A contains a convex subcategory which is either representation-infinite tilted algebra of type \tilde{E}_p ($p = 6, 7$ or 8) or a tubular algebra.

Then A is either a tilted algebra or a coil algebra. In particular, A is of polynomial growth, hence it is tame.

The paper is organized as follows. In Section 1 we present some remarks on essentially present modules, that is, indecomposable modules X such that $\text{supp } X$ contains all the extreme vertices of the quiver of the algebra. In Section 2 we recall concepts and results needed for the proof of the Theorem. The proof presented in Section 3 depends heavily on the arguments given in [17, 19].

1. Essentially present modules

1.1. Let $A = kQ/I$ be a finite dimensional k-algebra. For each vertex $i \in Q_0$, we denote by e_i the corresponding primitive idempotent of A, hence $P_i = e_iA$ is the projective cover of the simple module $S_i = e_iA/e_i \text{rad } A$ and $I_i = DAe_i$ the injective envelope of S_i. By $D = \text{Hom}_k(-, k)$ we denote the usual duality on $\text{mod } A$.

For a module $X \in \text{mod } A$, $i \in \text{supp } X$ if $\text{Hom}_A(P_i, X) \neq 0$ (equivalently, $\text{Hom}_A(X, I_i) \neq 0$). We say that X is omnipresent (resp. essentially present) if $\text{supp } X = Q_0$ (resp. each source or sink in Q belongs to $\text{supp } X$). Clearly, X is essentially present if and only if for every simple projective A-module S we have $\text{Hom}_A(S, X) \neq 0$ and for every simple injective A-module T we have $\text{Hom}_A(X, T) \neq 0$.

We consider the Grothendieck group $K_0(A) = \mathbb{Z}^{Q_0}$ and the classes $\text{dim } X = (\text{dim}_k X(i))_{i \in Q_0}$ of modules $X \in \text{mod } A$. We recall that the homological form defined by Ringel [22] for algebras A of finite global dimension is given by

$$\langle \text{dim } X, \text{dim } Y \rangle_A = \sum_{s=0}^{\infty} (-1)^s \text{dim}_k \text{Ext}^s_A(X, Y).$$

1.2. We denote by Γ_A the Auslander-Reiten quiver of A with translation $\tau_A = D\text{Tr}$. By a component of Γ_A we mean a connected component. The structure of preprojective, preinjective and tubular components may be seen in [1, 22, 23, 24]. A path in $\text{mod } A$ is a sequence $X_0 \to X_1 \to \cdots \to X_t$ of non-zero non-isomorphisms between indecomposable A-modules; it is a cycle if X_0 and X_t are isomorphic.
We say that an indecomposable \(A \)-module \(X \) is directing if it does not belong any cycle in \(\text{mod} \ A \).

Given a component \(C \) of \(\Gamma_A \) we say that \(C \) is convex in \(\text{mod} \ A \) if any path \(X_0 \to X_1 \to \cdots \to X_t \) in \(\text{mod} \ A \) with extremes \(X_0 \) and \(X_t \) in \(C \), has all \(X_i \in C, \ i = 1, \ldots, t \). We shall consider also the support \(\text{supp} C := \bigcup_{X \in C} \text{supp} X \) of \(C \).

Proposition. Let \(A = kQ/I \) be a triangular algebra and let \(X \) be an essentially present indecomposable \(A \)-module in a component \(C \) of \(\Gamma_A \).

(a) If \(i \notin Q_0 \setminus \text{supp} X \), then there is a cycle in \(\text{mod} \ A \) passing through \(X \) and \(S_i \).

(b) If \(C \) is convex in \(\text{mod} \ A \), then \(\text{supp} C = Q_0 \).

Proof. (Following [5]) (a) Assume \(i \notin Q_0 \setminus \text{supp} X \). Since \(X \) is essentially present and \(A \) is triangular, there is a path \(\gamma \) of the form \(i_0 \to i_1 \to \cdots \to i_s \) in \(Q \) with \(i_0, i_s \in \text{supp} X \) and \(i_1, \ldots, i_{s-1} \notin \text{supp} X \) with \(i = i_t \) for some \(1 \leq t \leq s - 1 \). Let \(\bar{A} \) be the quotient of \(A \) by all paths \(x \xrightarrow{\alpha} y \xrightarrow{\beta} z \) with exactly one arrow in \(\gamma \). Then there is a cycle in \(\text{mod} \ A \)

\[
X \to \bar{I}_s \to S_{i_s} \to \begin{pmatrix} i_s-1 \\ i_s \end{pmatrix} \to S_{i_{s-1}} \to \cdots \to \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} \to S_{i_1} \to \bar{P}_0 \to X
\]

where \(\bar{P}_x \) (resp. \(\bar{I}_x \)) denotes the indecomposable projective (resp. injective) \(\bar{A} \)-module associated to \(x \) and \(\begin{pmatrix} x \\ y \end{pmatrix} \) is the indecomposable module of dimension two with socle \(S_y \) and top \(S_x \).

(b) Since \(X \in C \), by (a), for every \(i \notin Q_0 \setminus \text{supp} X \), the simple module \(S_i \) belongs to \(C \). Hence \(\text{supp} C = Q_0 \).

1.3. We recall that an algebra \(A \) is tame [10] if, for each \(d \in \mathbb{N} \), there is a finite number of \(k[t] - A \)-bimodules \(M_i, 1 \leq i \leq n_d \), which are finitely generated free as left \(k[t] \)-modules and such that all but finitely many isoclasses of indecomposable \(A \)-modules of dimension \(d \) are of the form \(k[t]/(t-\lambda) \otimes_{k[t]} M_i \) for some \(i \) and some \(\lambda \in k \). Let \(\mu_A(d) \) be the minimal \(n_d \) in the definition. Then \(A \) is said to be of polynomial growth [25] if there is a number \(m \) such that \(\mu_A(d) \leq d^m \) for every \(d \geq 1 \).

The following proposition on the behaviour of the Auslander-Reiten components of strongly simply connected algebras of polynomial growth has been proved in [27, Theorem 4.1].
Proposition. Let A be a strongly simply connected algebra of polynomial growth. Then every component of Γ_A is convex in mod A.

1.4. A useful construction is the one-point extension $B[M]$ of an algebra B by a B-module M, given as the matrix algebra

$$B[M] = \begin{pmatrix} k & MB \\ 0 & B \end{pmatrix}.$$

One-point coextensions $[M]B$ are defined dually. The following extension of a result in [17] yields necessary conditions for an algebra to be essentially sincere.

Splitting Lemma. Let A be a triangular algebra and $B = B_0, B_1, \ldots, B_s = A$ a family of convex subcategories of A such that, for each $0 \leq i \leq s$ with $B_{i+1} = B_i[M_i]$ or $B_{i+1} = [M_i]B_i$ for some indecomposable B_i-module M_i. Assume that the category of indecomposable B_i-modules admits a splitting $\text{ind} B_i = P \vee J$, where P and J are full subcategories of $\text{ind} B_i$ satisfying the following conditions:

(S1) $\text{Hom}_{B_i}(J, P) = 0$;
(S2) for each i such that $B_{i+1} = B_i[M_i]$, the restriction $M_{i,B}$ belongs to $\text{add} J$;
(S3) for each i such that $B_{i+1} = [M_i]B_i$, $M_{i,B}$ belongs to $\text{add} P$;
(S4) there is an index i with $B_{i+1} = B_i[M_i]$ and $M_i \in J$ and an index j with $B_{j+1} = [M_j]B_j$ and $M_j \in P$.

Then A is not essentially sincere.

Proof. Let x_1, \ldots, x_r (resp. y_1, \ldots, y_t) be those vertices at the quiver Q of A being sources (resp. targets) or arrows with target (resp. source) in B. For each i, denote by B_i^+ the maximal convex subcategory of B_i not containing any y_1, \ldots, y_t (resp. x_1, \ldots, x_r). Let P_i (resp. J_i) be the full subcategory of $\text{ind} B_i^-$ (resp. of $\text{ind} B_i^+$) consisting of modules X such that $X|_B \in \text{add} P_i$ (resp. $X|_B \in \text{add} J_i$). We claim that $\text{ind} B_i = P_i \vee J_i$ and $\text{Hom}_{B_i}(J_i, P_i) = 0$.

The proof of the claim follows by induction as in [17, page 1022].

We get that $\text{ind} A = P_s \vee J_s$ with $\text{Hom}_A(J_s, P_s) = 0$, P_s consists of B_s^+-modules and J_s consists of B_s^--modules. Moreover, by (S4), $B \neq B_s^+$ and $B \neq B_s^-$. Let $X \in P_s$ and let y be a sink in Q which is a successor of y_1. Since B_s^+ is convex in A, then y is not in B_s^+, hence $X(y) = 0$. That is, X is not essentially present. Similarly, any module $Y \in J_s$ is not essentially present. We conclude that A is not essentially sincere.
Observe that, for a strongly simply connected algebra A and a convex subcategory B of A, there exists a chain $B = B_0, B_1, \ldots, B_s = A$ of convex subcategories of A such that $B_{i+1} = B_i[M_i]$ or $B_{i+1} = [M_i]B_i$ for some indecomposable B_i-module M_i (see [17, Proposition 2.2]).

1.5. The following are typical examples of strongly simply connected algebras A and essentially present (not omnipresent) indecomposable A-modules X. (We indicate, the relations in A by dotted edges: given $i \rightarrow j$, the sum of all paths from i to j in Q is zero).

(1)

\[A : \]

\[X : \]

We note that, in the first case, A is a tame concealed algebra, and hence is of polynomial growth.

On the other hand, in the second case, A is a tame algebra of non-polynomial growth and there is an infinite family of pairwise nonisomorphic indecomposable A-modules $(Y_\lambda)_{\lambda \in k}$ with $\dim Y_\lambda = \dim X$.

Proposition. Let A be a strongly simply connected algebra. Assume $v \in \mathbb{N}^{Q_0}$ is an essentially present vector which is not omnipresent and such that there exists an infinite family $(Y_\lambda)_{\lambda}$ of pairwise nonisomorphic indecomposable A-modules with $\dim Y_\lambda = v$. Then A is not of polynomial growth.
Proof. Assume that A is tame of polynomial growth. Since A is tame, by a result of Crawley-Boevey [8], some module Y in the family $(Y_\lambda)_\lambda$ satisfies $\tau_A Y \cong Y$, and hence lies in a stable tube C of rank one in Γ_A. Further, since A is of polynomial growth, applying 1.3, we conclude that C is convex in mod A. Hence, applying 1.2, we obtain $\text{supp} C = Q_0$. Finally, since every module $X \in C$ has $\dim X = qv$ for certain rational number $q > 0$, we conclude that the vector v is omnipresent, a contradiction.

2. Algebras of polynomial growth

2.1. Let C be a tame concealed algebra, that is, $A = \text{End}_H(T)$ for a preprojective tilting module T over a tame hereditary algebra H, and let $(T_\lambda)_{\lambda \in P_1(k)}$ be the unique family of stable tubes in Γ_C. Let $E = (E_1, \ldots, E_s)$ be a sequence of pairwise non-isomorphic C-modules which are simple among the regular modules and a family $K = (K_1, \ldots, K_s)$ of branches. In [22], the tubular extension $B = C[E, K]$ is defined and has tubular type $n_B = (n_\lambda)_\lambda$ with $n_\lambda = \text{rank} T_\lambda + \sum_{E_i \in T_\lambda} |K_i|$. Since almost all $n_\lambda = 1$, we write instead of $n_B = (n_\lambda)_\lambda$ the finite sequence consisting of at least two n_λ, keeping those which are larger than 1, and arranged in non-decreasing order.

We recall that B is a domestic tubular (resp. tubular) algebra if n_B is (p, q), $1 \leq p \leq q$, (2, 2, r), $2 \leq r$, (2, 3, 3), (2, 3, 4), (2, 3, 5) (resp. (3, 3, 3), (2, 4, 4), (2, 3, 6) or (2, 2, 2, 2)).

The following fact is well known (see [15, 22]).

Proposition. Let B be a tubular extension of a tame concealed algebra C. Then the following statements are equivalent:

(a) B is tame;
(b) B is domestic tubular or a tubular algebra;
(c) q_B is weakly non-negative.

2.2. For the definitions of admissible operations and the construction of coils, we refer the reader to [2, 3].

Following [3], an algebra B is said to be a coil enlargement of a tame concealed algebra C if there is a finite sequence of algebras $C = B_0, B_1, \ldots, B_m = B$ such that B_{j+1} is obtained from B_j by an admissible operations (ad 1), (ad 2) or (ad 3) (resp. (ad 1*), (ad 2*), (ad 3*)) with a pivot (resp. a copivot) on a stable tube of Γ_C or in a component of Γ_{B_j} obtained from a stable tube.
of Γ_C by a sequence of admissible operations done so far. By a coil algebra we mean a tame strongly simply connected algebra obtained as a coil enlargement of a tame concealed algebra.

The following structure result has been proved in [3].

Proposition. Let B be a coil enlargement of a tame concealed algebra C. Then:

(a) There exists a unique maximal tubular extension B^+ of C which is a convex subcategory of B such that B is obtained from B^+ as a sequence of algebras $B^+ = B_0, B_1, \ldots, B_m = B$ such that B_{j+1} is obtained from B_j by an admissible operation (ad 1*), (ad 2*) or (ad 3*) with a copivot on a coil component of Γ_{B_j}.

(b) There exists a unique maximal tubular coextension B^- of C which is a convex subcategory of B such that B is obtained from B^- as a sequence of algebras $B^- = B_0, B_1, \ldots, B_n = B$ such that B_{j+1} is obtained from B_j by an admissible operation (ad 1), (ad 2) or (ad 3) with a pivot on a coil component of Γ_{B_j}.

(c) There is a splitting $\text{ind } B = \mathcal{P} \vee \mathcal{J}$, where \mathcal{P} is formed by components of Γ_{B^-} and some coils obtained by admissible operations as in (b), and \mathcal{J} is formed by components of Γ_{B^+}. The splitting satisfies conditions (S1), (S2) and (S3) in 1.4. It satisfies (S4) if and only if B^+ is a proper subcategory of B (equivalently B^- is a proper subcategory of B).

(d) B is tame if and only if B^+ and B^- are tame.

As a consequence of the splitting of $\text{ind } B$ for a coil enlargement B of a tame concealed algebra, we get the following result [27, 18].

Proposition 2.3. Let A be a polynomial growth strongly simply connected algebra and X be an essentially present indecomposable A-module. Then one of the following situations occur:

(a) A is a tilted algebra of tame representation type, X is a directing module and $q_A(\dim X) = 1$.

(b) A is a coil algebra and X belongs to a coil component of Γ_A.
3. The proof of the Theorem

We start with some technical considerations.

Proposition 3.1. Let A be an essentially sincere strongly simply connected algebra such that q_A is weakly non-negative. Let $B \subset D = [X]B$ be two convex subcategories of A such that B is a coil enlargement of a tame concealed algebra C and X is an indecomposable module lying on a coil Γ of Γ_B such that $\text{Hom}_B(Z, X) \neq 0$ for a non-directing Z in Γ. Then D is either a coil algebra or B^- is a tilted algebra of type \tilde{D}_n with an indecomposable Y in the preprojective component of Γ_B satisfying $\dim_k \text{Hom}_B(Y, X) = 2$.

Proof. Let $F = B^-$ and N be the restriction of X to F. Then $[N]F$ is a convex subcategory of $D = [X]B$. By 2.1, F is a domestic tubular or a tubular algebra which is a tubular extension of C. Assume, in order to get a contradiction, that F is a tubular algebra. Then X belongs to the inserted family of coils in Γ_F. If X is copivoting, then $D = [X]B$ is a coil algebra. Suppose now that X is not copivoting. We distinguish two situations.

Assume first that the support of $\text{Hom}_F(-, N)|_T$ contains the k-linear category of a subquiver S of the component T of Γ_F with $N \in T$, where S has the shape (1).

\[
\begin{array}{c}
\text{•} \\
\end{array}
\]

\[
\begin{array}{c}
\text{•} \\
\end{array}
\]

In this case, F is a tubular extension of the tame concealed algebra C of type \tilde{D}_n. Then there is a component $T' \neq T$ of Γ_F containing projective modules. A simple application of the Splitting Lemma implies that A is not essentially sincere, a contradiction. Since X is not copivoting, then $\text{supp} \text{Hom}_F(-, N)|_T$ contains a k-linear category of a poset of type (2). If C is of type \tilde{D}_n we obtain a contradiction as above. Otherwise, $\text{Hom}_F(\text{mod} F, N)$
contains a full subcategory given by a poset

\[
\begin{array}{cccc}
\text{Hom}_F(Z_5, N) & \text{Hom}_F(Z_1, N) & \text{Hom}_F(Z_2, N) & \text{Hom}_F(Z_3, N) & \text{Hom}_F(Z_4, N)
\end{array}
\]

of type \((1, 1, 1, 2)\) where \(Z_1, Z_2\) lie in \(T\) and \(Z_3, Z_4, Z_5\) lie in the preprojective component of \(\Gamma_F\). Considering the coextension vertex \(t\) of \([N]F\), and the vector

\[
v = 4e_t + 2 \sum_{i=1}^{4} \dim Z_i + \dim Z_5 \in K_0([N]F)
\]
evaluating the Tits form \(q_{[N]F}\) at \(v\) (using that \(\text{gldim } F \leq 2\)) we get

\[
q_{[N]F}(v) = \langle v, v \rangle_F + 8 \sum_{i=1}^{4} \dim_k \text{Ext}^3_{[N]F}(Z_i, S_t) + 4 \dim_k \text{Ext}^3_{[N]F}(Z_5, S_t)
\]

\[
= -1 + 8 \sum_{i=1}^{4} \dim_k \text{Ext}^2_F(Z_i, N) + 4 \dim_k \text{Ext}^2_F(Z_5, N) = -1.
\]
The last equality due to the fact that \(\text{pdim}_F Z_i \leq 1\) for \(i = 3, 4, 5\) and \(\text{Ext}^2_F(Z_i, N) = 0, i = 1, 2\), from the structure of \(T\). This contradicts the weak non-negativity of \(q_A\) and shows that \(F\) is tilted of type \(\tilde{\mathbb{D}}_n\) or \(\tilde{\mathbb{E}}_p\) \((p = 6, 7\) or \(8)\).

If \(X\) is copivoting, then the vector space category \(\text{Hom}_B(\text{mod } B, X)\) is tame. Indeed, if it is not linear, say \(\dim \text{Hom}_B(M, X) \geq 2\) for an indecomposable \(B\)-module \(M\), then every object \(Y \in \Gamma_B\) is comparable with \(X\) (that is, there is \(0 \neq f \in \text{Hom}_B(X, Y)\) or \(0 \neq f \in \text{Hom}_B(Y, X)\) with \(\text{Hom}_B(f, X) \neq 0\)). Then \(F\) is tilted of type \(\tilde{\mathbb{D}}_n\) and \(M\) is preprojective in \(\Gamma_F\). Assume \(\text{Hom}_B(\text{mod } B, X)\) is linear.

If it is not of tame type, then it contains a full subposet \(L\) belonging to the Nazarova’s list. We identify each point \(a \in L\) with an indecomposable \(X_a\) in the preprojective component \(\mathcal{P}\) of \(\Gamma_F\). Moreover, since the orbit graph of \(\mathcal{P}\) is a tree (since \(A\) is strongly simply connected), we may choose \(L\) such that any subchain \(H\) yields a sectional path in \(\mathcal{P}\). Let \(v\) be a positive vector such that \(\chi_L(v) = -1\) for the graphical form \(\chi_L\) associated to \(L\) (see [22]). Then using that \(\text{gldim } D \leq 2\) we get

\[
q_D \left(\sum_{a \in L} v(a) \dim X_a + v(w)e_t \right) = \chi_L(v) = -1,
\]
for \(t \) the extension vertex of \(D \) such that \(I_t / \text{soc} I_t = X \). This leads to a contradiction with the weak non-negativity of \(q_A \), showing that \(\text{Hom}_B(\text{mod} B, X) \) is tame. Hence \(D \) is a tame coil enlargement of \(C \).

If \(X \) is not copivoting, then \(\text{supp} \text{Hom}_B(-, X)|_\Gamma \) contains one of the posets (1) or (2).

In the first case, as above, \(F = B^- \) is of type \(\tilde{\mathcal{D}}_n \). In the second case, if \(F \) is not of type \(\tilde{\mathcal{D}}_n \) we find a full subposet of \(\text{Hom}_F(\text{mod} F, X) \) of type \((1, 1, 1, 2)\) and, as above, we get a contradiction against the weak non-negativity of \(q_A \). In both cases, there is a preprojective module \(Y \) in \(\Gamma_F \) with \(\dim_k \text{Hom}_F(Y, X) = 2 \).

Proposition 3.2. Let \(A \) be an essentially sincere strongly simply connected algebra with \(q_A \) weakly non-negative. Let \(B \) be a convex subcategory of \(A \) satisfying the following conditions:

(i) \(B \) is a representation-infinite tilted algebra of type \(\tilde{\mathcal{E}}_p \) (\(p = 6, 7 \) or 8) having a complete slice in its preinjective component;

(ii) \(A \) admits not a convex subcategory of the form \([N]B\) for any indecomposable \(B \)-module \(N \);

(iii) for any convex subcategory \(B[M] \) of \(A \), \(M \) is an indecomposable preinjective \(B \)-module.

Then \(A \) is a tame tilted algebra.

Proof. We know that \(\Gamma_B \) consists of a preprojective component \(\mathcal{P} \), a family \(T_\lambda \) of inserted tubes and a preinjective component \(\mathcal{J} \) having a section of type \(\tilde{\mathcal{E}}_p \). We may choose \(\Sigma \) a section of \(\mathcal{J} \) such that any indecomposable \(M \) such that \(B[M] \) is a convex subcategory of \(A \), is a successor of \(\Sigma \) (in order of paths in \(\mathcal{J} \)).

Choose a sequence of categories \(B = B_0, B_1, \ldots, B_s = A \) such that \(B_{j+1} = B_j[M_j] \) or \(B_{j+1} = [M_j]B_j \) for an indecomposable \(B_j \)-module \(M_j \). We claim that for each \(j \), there is a component \(C_j \) in \(\Gamma_{B_j} \) satisfying:

(a) \(C_j \) is a directing component (that is, \(C_j \) is convex in \(\text{mod} B_j \) and without cycles);

(b) \(C_j \) has a complete slice \(\Sigma_j \) which is a tree.

In particular, this shows that \(A = B_s \) is a tilted algebra. Then, by [11], \(A \) is tame.

Indeed, \(C_0 = \mathcal{J} \) and \(\Sigma_0 = \Sigma \). Assume \(C_j \) is a directing component of \(\Gamma_{B_j} \) with a complete slice \(\Sigma_j \) such that any indecomposable \(M \), such that \(B[M] \)
is a convex subcategory of A, is a successor of Σ_j—maybe not in C_j (observe that Σ_j may be selected this way as an application of the Splitting Lemma).

Suppose $B_{j+1} = B_j[M_j]$ for an indecomposable. We claim that $M_j \in C_j$. Otherwise by the Splitting Lemma, there are no injective modules in C_j. Since q_{B_j} is weakly non-negative, then Σ_j is of extended Dynkin type and $j = 0$. In that case $C_0 = \mathcal{J}$ is a preinjective component, a contradiction showing that $M_j \in C_j$. By [20], M_j lies in a directing component of $\Gamma_{B_{j+1}}$ with a (complete) slice Σ_{j+1} which is a tree (extending Σ_j).

Suppose $B_{j+1} = [M_j]B_j$. By hypothesis, we have $M_j|B = 0$. If $M_j \notin C_j$, then the Splitting Lemma implies that A is not essentially sincere as illustrated in the following picture:

Hence $M_j \in C_j$ and there should exists Σ_j preceeding M_j (apply Splitting Lemma again!). Then M_j belongs to a directing component C_{j+1} of $\Gamma_{B_{j+1}}$ with a complete slice Σ_{j+1}.

The case complementary Proposition 3.2 goes as follows:

Proposition 3.3. Let A be an essentially sincere strongly simply connected algebra with q_A weakly non-negative. Assume A contains a full convex subcategory B satisfying the conditions:

(i) B is either a representation-infinite algebra of type \tilde{E}_p ($p = 6, 7$ or 8) with a complete slice in the preinjective component and some projective outside the preprojective component or B is a tubular algebra;

(ii) there is a convex subcategory A of the form $[N]B$ for some indecomposable B-module N.

Then A is a coil algebra.
Proof. Choose B maximal satisfying (i) and (ii). Let D be a maximal coil enlargement of B in A. We want to prove that $D = A$.

Let $\Gamma_D = P_\infty \lor C \lor J$ where J_0 is the preinjective component of B, $C = (C_\lambda)_{\lambda}$ is a family of coils such that, for certain λ_0, C_{λ_0} contains a projective module and P_∞ is formed by D^--modules. By Proposition 2.3, D^- is a tilted algebra or a tubular algebra.

Observe that the maximality of B implies that $N \notin J_0$. Hence $N \in C$. The Splitting Lemma implies that C_{λ_0} is the only component in C that may contains projective or injective modules, and in fact contains both types (in particular, $N \in C_{\lambda_0}$). If D is properly contained in A, then there is a convex subcategory D' of D of the form $D[X]$ or $[X]D$ for an indecomposable D-module X. Maximality of B and the Splitting Lemma imply that $X \in C_{\lambda_0}$. Since $q_{D'}$ is weakly non-negative, D' is a coil algebra by Proposition 3.1. Then $D' \subset D$ which is a contradiction. Therefore, $A = D$ is a coil algebra.

Proof of the Theorem. We may assume that A admits a maximal proper convex subcategory B which is a tubular extension of a tame concealed algebra C and such that B is either a tubular algebra or a representation-infinite tilted algebra of type \tilde{E}_p ($p = 6, 7$ or 8) having a complete slice in its preinjective component. Therefore, for any convex subcategory of A of the form $B[M]$, M is a preinjective B-module, since $q_B[M]$ is weakly non-negative, M is not preprojective, and the maximality of B and Proposition 3.1 imply that M is not in a coil component). Hence the Splitting Lemma implies that B is not a tubular algebra.

By the maximality of B we may assume that either the hypothesis of Proposition 3.2 or those of Proposition 3.3 hold. Then either A is a tilted algebra or a coil algebra.

References

