On Extreme Points of the Dual Ball of a Polyhedral Space

Roi Livni

Department of Mathematics, Ben Gurion University of the Negev,
P.O.B 653, Beer-Sheva 84105, Israel, RLivni@gmail.com

Presented by Pier L. Papini Received February 3, 2009

Abstract: We prove that every separable polyhedral Banach space \(X \) is isomorphic to a polyhedral Banach space \(Y \) such that, the set \(\text{ext} B_{Y^*} \) cannot be covered by a sequence of balls \(B(y_i, \epsilon_i) \) with \(0 < \epsilon_i < 1 \) and \(\epsilon_i \to 0 \). In particular \(\text{ext} B_{Y^*} \) cannot be covered by a sequence of norm compact sets. This generalizes a result from [7] where an equivalent polyhedral norm \(|||\cdot||| \) on \(c_0 \) was constructed such that \(\text{ext} B_{(c_0,|||\cdot|||)^*} \) is uncountable but can be covered by a sequence of norm compact sets.

Key words: Polyhedral Banach space, boundary, extreme points.

REFERENCES

[9] A. Sobczyk, Projections of the space \(m \) on its subspace \(c_0 \), Bull. Amer. Math. Soc. 47 (1941), 937–947.