Abstract: In this paper, we define the multivalued entire series in a Banach algebra \mathcal{A} as well as the exponential, the spectrum and the numerical range of a compact set of \mathcal{A}. We provide properties for these two sets which are also verified in the univalued case.

Key words: Banach algebra, Hausdorff distance, spectrum and numerical range.

AMS Subject Class. (2010): 30B10.

1. Introduction

The concept of the exponential of a set has been useful in the study of differential inclusions and Lipschitz selections. Firstly, it was considered (independently) by A. L. Dontchev and E. M. Farkhi [9] in 1989 and P. R. Wolenski [19] in 1990. In 2003, E. O. Ayoola has developed this concept for the study of quantum stochastic differential inclusions [3]. In 2006 and in various ways the extension of multivalued case exponential function was developed in [1], [5] and [6].

At the beginning of this paper, we study the multivalued entire series $S(K) = \sum a_n K^n$ (where K is in $\mathbb{K}(\mathcal{A})$, the set of all compact sets of a Banach algebra \mathcal{A}) which is used to define e^K.

Then, for $K \in \mathbb{K}(\mathcal{A})$, we define $\sigma(K)$, the spectrum of K, as the union of all spectrum $\sigma(a)$ when a runs K. If $\mathcal{A} = \mathcal{B}(H)$, i.e., the set of all bounded linear operators on a complex Hilbert space H, and K is in $\mathbb{K}(\mathcal{B}(H))$, we define $W(K)$, the numerical range of K, as the convex hull of the union of $W(A)$ when A varies over K and

$$W(A) = \{ \langle Ax, x \rangle : \|x\| = 1 \}.$$

The last set is called the numerical range of A which is always a convex set of \mathbb{C} whose closure contains the convex hull of $\sigma(A)$ or $\cos(A)$ [14]. In general, in the noncommutative case, the spectrum is not continuous with respect to the
Hausdorff metric [2]. (For more recent work on this topic, see, for example, [18]). We show a range of properties for $\sigma(K)$ and $W(K)$ which are verified in the single valued case, such as continuity of the numerical range in the sense of Hausdorff [8] and the continuity of the spectrum in the case where \mathcal{A} is commutative. We also show for $K \in \mathbb{K}(\mathcal{B}(H))$ that:

$$|K| \leq 2\omega(K) - \frac{\omega^2(K)}{|K|},$$

(1)

where

$$\omega'(K) = \inf \{ \|z\| : z \in W(A), A \in K \},$$

and

$$\omega(K) = \sup \{ \|z\| : z \in W(A), A \in K \},$$

is the K numerical radius. The last inequality is optimal and generalized in the single valued case the following classical inequality [13]:

$$\|A\| \leq 2\omega(A), \ A \in \mathcal{B}(H).$$

As an application of (1) we show that for K and K' in $\mathbb{K}(\mathcal{B}(H))$

$$|KK'| \leq \left(w(K) - \frac{w^2(K)}{2|K|} \right) |K'| + \left(w(K') - \frac{w^2(K')}{2|K'|} \right) |K|.$$

(2)

The previous inequality is an improvement in the single valued case of the following theorem from Dragomir [10]:

Theorem 1. ([10]) Let $A, B \in \mathcal{B}(H)$ and $\alpha, \beta, \gamma, \lambda \in \mathbb{C}$ be such that for every $x \in H$,

$$\langle (A^* - \tilde{\alpha}I)(\beta I - A)x, x \rangle \geq 0 \text{ and } \langle (B^* - \tilde{\gamma}I)(\lambda I - B)x, x \rangle \geq 0.$$

Then,

$$\|AB\| \leq w(A) \|B\| + w(B) \|A\| + w(A) w(B) + \frac{1}{4} |\beta - \alpha| |\lambda - \gamma|. \quad (3)$$

In [11], and [12], Dragomir said that’s an open problem whether or not the constant $\frac{1}{4}$ is best possible in the inequality (3). The inequality (2) is the solution of this problem.

Dragomir in 2008 [11] showed that

$$\|A\|^2 \leq \omega^2(A) + d^2(A), \ A \in \mathcal{B}(H),$$
with
\[d(A) = \sup \left\{ \| \langle Ax, y \rangle \| : \| x \| = \| y \| = 1, \langle x, y \rangle = 0 \right\}. \]
We also generalize this result in the set valued case by showing that for \(K, K' \in \mathcal{B}(H) \)
\[\omega(KK') \leq \omega(K)\omega(K') + d(K)d(K'), \]
where
\[d(K) = \sup \{ d(A) : A \in K \}. \]
Finally, when
\[K_1(A) = \{ K \in \mathbb{K}(A) : \forall a, b \in K, \ ab = ba \}, \]
we show the following spectral theorem:

Theorem 2. For each \(K \in K_1(A) \), we have
\[\sigma(S(K)) \subset S(\sigma(K)). \]

2. Definitions and preliminaries

In this paper \(A \) is a Banach algebra over \(\mathbb{C} \), with unit element \(I \). The following definitions are useful in the sequel.

Definition 3. Let \(K \) and \(K' \) be two elements of \(\mathbb{K}(A) \) and \(\alpha \) a complex number. We denote
\[
K \cdot K' = \{ x \cdot y : x \in K, y \in K' \}, \\
K + K' = \{ x + y : x \in K, y \in K' \}, \\
\alpha K = \{ \alpha I \} \cdot K = \{ \alpha \cdot x : x \in K \}, \\
\alpha + K = \{ \alpha I \} + K = \{ \alpha I + x : x \in K \}, \\
|K| = \sup_{X \in K} \| X \|, \\
K^0 = \{ I \}, \quad K^n = K \cdot K^{n-1}, \quad \forall n \in \mathbb{N}^*.
\]
We note that in general \(K \cdot K' \) is not equal to \(K' \cdot K \) and \(K^n = K^p K^q \), with \(p + q = n \) and \(p, q, n \in \mathbb{N} \).

Definition 4. Let \(K, K' \in \mathbb{K}(A) \). The Hausdorff distance between \(K \) and \(K' \) denoted by \(h(K, K') \) is the maximum of the excess \(e(K, K') \) and \(e(K', K) \) where
\[e(K, K') = \sup_{X \in K} \inf_{Y \in K'} \| X - Y \|. \]
Definition 5. Let F be a multifunction from \mathcal{A} into $\mathbb{K}(\mathcal{A})$ and let $X_0 \in \mathcal{A}$. F is called Hausdorff upper semicontinuous at X_0 ("Hscs" at X_0) if for any sequence $(X_n)_{n \in \mathbb{N}}$ of elements of \mathcal{A}, which converges to X_0, we have

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, F(X_n) \subset F(X_0) + B(0, \epsilon),$$

where $B(0, \epsilon)$ is the open ball in \mathcal{A} with center 0 and radius ϵ.

It follows immediately from (4) that

$$\forall \epsilon > 0, \exists \eta > 0 \text{ such that } \forall X \in B(X_0, \eta), e(F(X), F(X_0)) \leq \epsilon.$$

(5)

3. Multivalued power series in \mathcal{A}

Definition 6. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers, and let $K \in \mathbb{K}(\mathcal{A})$. We set

$$S_n(K) = \sum_{i=0}^{n} a_i K^i = a_0 + a_1 K + a_2 K^2 + \cdots + a_n K^n = \left\{ \sum_{i=0}^{n} a_i x_i : x_i \in K^i \right\}.$$

Definition 7. Let $K \in \mathbb{K}(\mathcal{A})$ be such that the sequences $\sum_{i=0}^{n} a_i x_i$ converges for all $x_i \in K^i$. We set

$$S(K) = \left\{ \sum_{n=0}^{+\infty} a_n x_n : x_n \in K^n \right\} = \sum_{i=0}^{\infty} a_n K^n.$$

In the remainder of this section, K denotes an element of $\mathbb{K}(\mathcal{A})$ and $(a_n)_{n \in \mathbb{N}}$ a sequence of complex numbers such that

$$\sum_{n=0}^{+\infty} a_n x_n \text{ converges and } \forall n \in \mathbb{N}, x_n \in K^n.$$

Theorem 8. Let r be the radius of convergence of the complex power series $\sum a_n z^n$. If $K \in \mathbb{K}(\mathcal{A})$, with $K \subset B(0, \delta)$ and $0 < \delta < r$, then $S(K)$ is a compact set of \mathcal{A}.

Proof. Let $(Y_p)_{p \in \mathbb{N}}$ be a sequence of elements of $S(K)$. We show that $(Y_p)_{p \in \mathbb{N}}$ admits a subsequence $(Y_{\varphi(p)})_{p \in \mathbb{N}}$ which converges in $S(K)$. For all $p \in \mathbb{N}$, we have

$$Y_p = \sum_{i=0}^{+\infty} a_i X_{i,p}.$$
with \(X_{i,p} \in K^i\) and \(X_{0,p} = I\). We set

\[Z_p = (a_0X_{0,p}, a_1X_{1,p}, \ldots, a_iX_{i,p}, \ldots) \in \prod_{i=0}^{\infty} a_iK^i.\]

This set is a compact set product. By Tychonov theorem [17], this is a compact set for the norm \(\|\cdot\|_\pi\), where for all \(p\) in \(\mathbb{N}\),

\[\|Z_p\|_\pi = \sum_{i=0}^{\infty} \frac{1}{2^{i+1}} \min\{1, \|a_iX_{i,p}\|\}.\]

We extract a subsequence \((Z_{\varphi(p)})_{p \in \mathbb{N}}\) which converges to

\[Z = (a_0X_0, a_1X_1, \ldots, a_iX_i, \ldots) \in \prod_{i=0}^{\infty} a_iK^i.\]

Let us show that \((Y_{\varphi(p)})_{p \in \mathbb{N}}\) converges to \(Y = \sum_{i=0}^{\infty} \alpha_iX_i\). Let \(\varepsilon \in]0, 1[\). The sequence \((Z_{\varphi(p)})_{p \in \mathbb{N}}\) converges to \(Z\), and then, for all \(\varepsilon_1 > 0\), there exists \(p_1 > 0\) such that for all \(p > p_1\),

\[\sum_{n=0}^{+\infty} \frac{1}{2^{n+1}} \min\{1, \|a_nX_{\varphi(p)}(p) - a_nX_n\|\} \leq \varepsilon_1,\]

and then,

\[\frac{1}{2^{n+1}} \min\{1, \|a_nX_{\varphi(p)}(p) - a_nX_n\|\} \leq \varepsilon_1\]

for any \(n \geq 0\). Since \(\delta < r\), \(\sum_{n=0}^{+\infty} |a_n\delta^n|\) is convergent. Thus, there exists \(n_2 > 0\) such that for all \(n \geq n_2\),

\[\sum_{i=n+1}^{+\infty} |a_i\delta^i| \leq \frac{\varepsilon}{3}.\]

Let \(\varepsilon_1 = \frac{1}{3} \frac{1}{2^{n_2+1}} \frac{\varepsilon}{n_2+1}\). Then, there exists \(p_{n_2}\) such that \(\frac{1}{2^{n+1}} > \varepsilon_1\) and

\[\frac{1}{2^{n+1}} \min\{1, \|a_nX_{\varphi(p)}(p) - a_nX_n\|\} = \frac{\|a_nX_{\varphi(p)}(p) - a_nX_n\|}{2^{n+1}} \leq \varepsilon_1,\]

for all \(p > p_{n_2}\) and \(n \leq n_2\). Then, for all \(n \leq n_2\),

\[\|a_nX_{\varphi(p)}(p) - a_nX_n\| \leq \frac{\varepsilon}{3(n_2+1)}.\]
and thus, for all \(p > p_{n_2} \),

\[
\|Y_{\varphi(p)} - Y\| \leq \sum_{n=0}^{n_2} \|a_n X_{n,\varphi(p)} - a_n X_n\| + \sum_{n=n_2+1}^{+\infty} \|a_n X_{n,\varphi(p)}\| + \sum_{n=n_2+1}^{+\infty} \|a_n X_n\|
\]

\[
\leq \sum_{n=0}^{n_2} \|a_n X_{n,\varphi(p)} - a_n X_n\| + \frac{2}{3}\varepsilon
\]

\[
\leq \sum_{n=0}^{n_2} (n_2 + 1) \frac{\varepsilon}{3(n_2 + 1)} + \frac{2}{3}\varepsilon = \varepsilon.
\]

Definition 9. Let \(K \in \mathbb{K}(\mathcal{A}) \). We define the set valued exponential of \(K \), denoted \(e^K \), by

\[
e^K = \sum_{n=0}^{+\infty} \frac{1}{n!} K^n = \left\{ \sum_{n=0}^{+\infty} \frac{1}{n!} x_n : \forall n \in \mathbb{N}, \ x_n \in K^n \right\}.
\]

Remark 10. Since the radius of convergence of complex series \(\sum z^n \) is infinite, then for every \(K \in \mathbb{K}(\mathcal{A}) \), \(e^K \) is well defined. Using Theorem 8, \(e^K \) is in \(\mathbb{K}(\mathcal{A}) \).

Theorem 11. Let \(K \in \mathbb{K}(\mathcal{A}) \), with \(K \subset B(0, \delta) \), \(r \) the radius of convergence of the complex power series \(\sum a_n z^n \) and \(0 < \delta < r \). Then, the sequence \(S_n(K) \) converges in the sense of Hausdorff to \(S(K) \).

Proof. Let \(Y_n \in S_n(K) \) and \(Y \in S(K) \), with \(Y_n = \sum_{i=0}^{n} a_i x_i \), \(Y = Y_n + \sum_{i=n+1}^{\infty} a_i x_i \), and \(x_i \in K^i \) for all \(i \in \mathbb{N} \). We have

\[
\|Y - Y_n\| \leq \sum_{i=n+1}^{\infty} |a_i| \delta^i,
\]

and then

\[
h(S(K), S_n(K)) \leq \sum_{i=n+1}^{\infty} |a_i| \delta^i.
\]

Hence the result.

The following lemma is useful in the proof of Theorem 13.
Lemma 12. Let $\sum_{n} a_{n}z^{n}$ be a complex entire series. Then for any $n \in \mathbb{N}$, the mapping S_{n} from $\mathbb{K}(\mathcal{A})$ to $\mathbb{K}(\mathcal{A})$, which associates to each K the set $S_{n}(K)$, is continuous in the sense of Hausdorff.

Proof. It is easy to see that the product and sum of two compact sets of \mathcal{A} are compact sets. For the continuity of S_{n}, it suffices to show that if $(K_{p})_{p \in \mathbb{N}}$ and $(K'_{p})_{p \in \mathbb{N}}$ are two sequences of compact set of \mathcal{A} which converge in the sense of Hausdorff respectively to two compact set K and K' then the sequences $(K_{p}K'_{p})_{p \in \mathbb{N}}$ and $(K_{p} + K'_{p})_{p \in \mathbb{N}}$ converge in the sense of Hausdorff respectively to KK' et $K + K'$.

By the triangle inequality, we have

$$h(K_{p}K'_{p}, KK') \leq |K_{p}| h(K'_{p}, K') + |K'| h(K_{p}, K).$$

The sequence $(K_{p})_{p \in \mathbb{N}}$ is convergent, and therefore $(|K_{p}|)_{p \in \mathbb{N}}$ is bounded from above. As a result, $(K_{p}K'_{p})_{p \in \mathbb{N}}$ converges to KK'.

For the other convergence, by triangle inequality, we have

$$h(K_{p} + K'_{p}, K + K') \leq h(K'_{p}, K') + h(K_{p}, K).$$

Theorem 13. Let r be the radius of convergence of the complex entire series $\sum_{n} a_{n}z^{n}$ and $\delta < r$. Then the mapping $S : \mathbb{K}(\mathcal{A}) \to \mathbb{K}(\mathcal{A})$, which to $K \subset B(0, \delta)$ associates $S(K)$, is continuous in the sense of Hausdorff.

Proof. Let us consider a sequence $(K_{p})_{p \in \mathbb{N}}$ of compact sets of \mathcal{A} included in $B(0, \delta)$, which converges in the sense of Hausdorff to a compact set K. Let us show that $h(S(K_{p}), S(K))$ tends to 0.

The series $\sum_{p} |a_{p}| \delta^{p}$ is convergent, and so the sequence $R_{n} = \sum_{p=n}^{\infty} |a_{p}| \delta^{p}$ tends to 0. Thus, for all $\varepsilon > 0$, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$,

$$\sum_{p=n}^{\infty} |a_{p}| \delta^{p} \leq \frac{\varepsilon}{3}.$$

Hence

$$h(S(K_{p}), S(K)) \leq h(S(K_{p}), S_{n_{0}}(K_{p})) + h(S_{n_{0}}(K_{p}), S_{n_{0}}(K))$$

$$+ h(S_{n_{0}}(K), S(K)).$$
By Lemma 12, the mapping S_{n_0} is continuous, and so for all $\varepsilon > 0$, there exists $p_0 \in \mathbb{N}$ such that for all $p \geq p_0$,

$$h(S_{n_0}(K_p), S_{n_0}(K)) \leq \frac{\varepsilon}{3}.$$

We have

$$h(S(K_p), S_{n_0}(K)) \leq \sum_{p=n}^{\infty} |a_p| \delta^p \leq \frac{\varepsilon}{3}.$$

And, similarly, for $h(S_{n_0}(K), S(K))$. Thus, for every $p \geq p_0$, $h(S(K_p), S(K)) \leq \varepsilon$.

4. Spectrum and numerical range of a compact set

Definition 14. Let K be an element of $\mathbb{K}(\mathcal{A})$. We define the spectrum of K, denoted $\sigma(K)$, and the algebraic numerical range of K, denoted $V(K)$, by:

$$\sigma(K) = \{ \lambda \in \mathbb{C} : \exists X \in K, \lambda \in \sigma(X) \} = \bigcup_{X \in K} \sigma(X)$$

and

$$V(K) = \text{co}\{ \emptyset(t) : \emptyset \in S(\mathcal{A}), t \in K \},$$

respectively, with

$$S(\mathcal{A}) = \{ \emptyset \in \mathcal{A}^* : \emptyset(I) = \|\emptyset\| = 1 \},$$

and $\sigma(X)$ the spectrum of X. Therefore, we have

$$V(K) = \text{co} \bigcup_{t \in K} V(t),$$

where

$$V(t) = \{ \emptyset(t) : \emptyset \in S(\mathcal{A}) \}.$$

The last set is called the algebraic numerical range of t in the single-valued case, which is always a closed and convex set in \mathbb{C} [16]. It is also located in the disk with center 0 and radius $\|t\|$, and satisfies $V(\mathcal{A}) = W(\mathcal{A})$ for all $\mathcal{A} \in \mathcal{B}(H)$ [4].

Definition 15. If $\mathcal{A} = \mathcal{B}(H)$, we define the numerical domain of K by:

$$W(K) = \text{co}\{ \langle Ax, x \rangle : \|x\| = 1, A \in \mathcal{K} \} = \text{co} \bigcup_{A \in \mathcal{K}} W(A).$$
For $K \in \mathbb{K}(\mathcal{A})$, we define the numerical radius of K, denoted $\omega(K)$, and the spectral radius of K, denoted $\rho(K)$, by:

$$\omega(K) = |V(K)| \quad \text{and} \quad \rho(K) = |\sigma(K)|.$$

Similarly, if $\mathcal{A} = \mathcal{B}(H)$, the numerical radius of K is

$$\omega(K) = |W(K)|.$$

Theorem 16. If $K \in \mathbb{K}(\mathcal{A})$, then $\sigma(K)$ is a compact set in \mathbb{C}.

The proof of this theorem is a consequence of Lemma 17 since in the single valued case, the spectrum mapping from \mathcal{A} to $\mathbb{K}(\mathcal{C})$ is Husc [2].

Lemma 17. Let $(E, \|\cdot\|)$ be a normed space, F a Husc multifunction from \mathcal{A} into $\mathbb{K}(E)$ and K a compact set of \mathcal{A}. Assume that there exists $\alpha > 0$ such that for all $x \in K$, $|F(x)| \leq \alpha \|x\|$. Then, $D = \cup F(x)$ is a closed bounded subset of E.

Proof. D is bounded since for all $\lambda \in D$ there exists $x \in K$ such that $\lambda \in F(x)$. Thus $\|\lambda\| \leq |F(x)| \leq \alpha |K|$. D is closed since if $(\lambda_n)_{n \in \mathbb{N}}$ is a sequence of elements of D which converges to $\lambda \in E$, then for all $n \in \mathbb{N}$, there exists $x_n \in K$ such that $\lambda_n \in F(x_n)$. Let (x_{n_k}) be a subsequence of (x_n) which converges to \bar{x} in K. Let us show that $\lambda \in F(\bar{x})$. For this, it suffices to prove that $e(\{\lambda\}, F(\bar{x})) = 0$ since $F(\bar{x})$ is a compact set. Fix $\varepsilon > 0$.

1) Since $\lambda_{n_k} \to \lambda$, then there exists $N_0 \in \mathbb{N}$ such that for all $k \geq N_0$, $\|\lambda - \lambda_{n_k}\| \leq \frac{\varepsilon}{2}$.

2) By the inequality (5) and since F is Hscs at \bar{x}, then there exists $\eta > 0$ such that for all $x \in B(\bar{x}, \eta)$, $e(F(x), F(\bar{x})) \leq \frac{\varepsilon}{2}$.

3) Also $x_{n_k} \to \bar{x}$ ensures that there exists $N_1 \in \mathbb{N}$ such that for all $k \geq N_1$, $x_{n_k} \in B(\bar{x}, \eta)$.

Take $k \geq \max(N_0, N_1) = N_2$, and use 1) and 2). We deduce that for all $k \geq N_2$, $e(F(x_{n_k}), F(\bar{x})) \leq \frac{\varepsilon}{2}$, and, consequently, for all $\varepsilon > 0$ and all $k \geq N_2$,

$$e(\{\lambda\}, F(\bar{x})) \leq \|\lambda - \lambda_{n_k}\| + e(\{\lambda_{n_k}\}, F(\bar{x})) \leq \|\lambda - \lambda_{n_k}\| + e(F(x_{n_k}), F(\bar{x})) \leq \varepsilon.$$

Thus, $\lambda \in F(\bar{x})$. \[\blacksquare\]
Definition 18. Let $K \in \mathbb{K}(\mathcal{B}(H))$. We say that K is positive (resp. self adjoint, normal) if each element of K is positive (resp. self adjoint, normal).

In the following Propositions 19 and 20 we show some properties for the spectral mapping and the numerical range of a compact set in \mathcal{A} which are also verified in the case of single valued mappings.

Proposition 19. Consider $K, K' \in \mathbb{K}(\mathcal{A})$ and $\alpha, \beta \in \mathbb{C}$. Then

1) $\sigma(\alpha K + \beta K') \subset \alpha \sigma(K) + \beta \sigma(K')$, if $ab = ba$ for all $(a, b) \in K \times K'$.

2) $V(\alpha K + \beta K') \subset \alpha V(K) + \beta V(K')$.

If $\mathcal{A} = \mathcal{B}(H)$, we further have

3) $W(\alpha K + \beta K') \subset \alpha W(K) + \beta W(K')$.

4) $w(K) = 0 \iff K = \{0\}$.

5) $\text{co} \sigma(K) \subset W(K)$.

6) If K is positive (resp. self adjoint), then $W(K) \subset \mathbb{R}^+$ (resp. $W(K) \subset \mathbb{R}$).

Proof. Since $\sigma(\alpha a + \beta b) \subset \alpha \sigma(a) + \beta \sigma(b)$, $V(\alpha a + \beta b) \subset \alpha V(a) + \beta V(b)$ for $a, b \in \mathcal{A}$, and $W(\alpha A + \beta B) \subset \alpha W(A) + \beta W(B)$ for $A, B \in \mathcal{B}(H)$, then 1), 2) and 3) are fulfilled. Property 4) can be obtained from the fact that if $A \in \mathcal{B}(H)$, then $w(A) \leq \|A\| \leq 2w(A)$ [13]. Thus

$$w(A) = 0 \iff A = 0.$$

Property 5) is deduced from $\text{co} \sigma(A) \subset W(A)$ if $A \in \mathcal{B}(H)$ [14]. Finally, the last property is trivial.

Proposition 20. Let $K, K' \in \mathbb{K}(\mathcal{A})$ be such that $ab = ba$ for all $(a, b) \in K \times K'$. Then

1) $\sigma(KK') \subset \sigma(K)\sigma(K')$.

2) If further $\mathcal{A} = \mathcal{B}(H)$ and K or K' is normal, then we have $\overline{W(KK')} \subset \text{co} \overline{W(K)\overline{W(K')}}$.

Proof. 1) is deduced from $\sigma(ab) \subset \sigma(a)\sigma(b)$ if $(a, b) \in K \times K'$ and $ab = ba$. If $A, B \in \mathcal{B}(H)$, $AB = BA$ and A or B is normal, then $\overline{W(AB)} \subset \text{co} \overline{W(A)\overline{W(B)}}$ [7]. Thus, 2).
Example 21. In this example, we have $K = K'$, $KK' = K'K$, but the elements of K do not commute with each other. As a consequence, Proposition 20 is not verified. Indeed, if $K = \{A, B\}$, with

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},$$

we have $\sigma(KK') = \{0, 1, 3, 4\}$, $\sigma(K)\sigma(K') = \{0, 1, 2, 4\}$. If $x = \frac{1}{\sqrt{2}}$ and $y = \frac{i}{\sqrt{2}}$, then $\langle AB(x), (y) \rangle = \frac{3 + i}{2} \in W(AB) \subset W(KK')$ and $coW(K)W(K') = [0, 4]$.

Definition 22. An operator A in $B(H)$ is said to be convexoid (resp. normaloid, spectraloid) if $W(A) = co\sigma(A)$ (resp. $w(A) = \|A\|$, $|\sigma(A)| = w(A)$).

Definition 23. Let $K \in \mathbb{K}(B(H))$, we say that K is a convexoid (resp. normaloid, spectraloid) if each element of K is a convexoid (resp. normaloid, spectraloid).

The following lemma, whose proof is obvious, is useful to demonstrate Proposition 25.

Lemma 24. Let $(\Gamma_i)_{i \in J}$ be a family of subsets of \mathbb{C} which indexed by a set J. We have:

$$co\bigcup_{i \in J} \Gamma_i = \bigcap_{i \in J} co\Gamma_i,$$

and

$$co \bigcup_{i \in J} co\Gamma_i = \bigcup_{i \in J} co\Gamma_i.$$

Proposition 25. Let $K \in \mathbb{K}(B(H))$ be a convexoid (resp. normaloid, spectraloid), then $W(K) = co\sigma(K)$ (resp. $w(K) = \|K\|$, $|\sigma(K)| = w(K)$).

Proof. In this proof we use the three equalities in the previous lemma. We consider only the case where K is a convexoid. The other two cases are obvious. For every $A \in K$, we have $W(A) = co\sigma(A)$. So

$$\bigcup_{A \in K} co\sigma(A) = \bigcup_{A \in K} W(A),$$

and

$$\bigcup_{A \in K} co\sigma(A) = \bigcup_{A \in K} W(A).$$
As a result, we have
\[
\operatorname{co}\bigcup_{A \in K} \operatorname{co}\sigma(A) = \operatorname{co}\bigcup_{A \in K} \operatorname{co}\sigma(A).
\]
This means
\[
\operatorname{co}\bigcup_{A \in K} \operatorname{co}\sigma(A) = \operatorname{co}\bigcup_{A \in K} W(A),
\]
and thus
\[
\operatorname{co}\bigcup_{A \in K} \sigma(A) = \operatorname{co}\bigcup_{A \in K} W(A).
\]
This implies that
\[
\operatorname{co}\sigma(K) = W(K).
\]
By Theorem 16, \(\sigma(K)\) is closed, so it is the same for \(\operatorname{co}\sigma(K)\), and hence the desired equality.

The following theorem shows the continuity of the multifunction \(\overline{W(K)}\) and generalizes the univocal case [8].

Theorem 26. Let \(K_n\) be a sequence in \(\mathcal{K}(\mathcal{B}(H))\) which converges in the Hausdorff sense to an element \(K\) of \(\mathcal{K}(\mathcal{B}(H))\), then \(\overline{W(K_n)}\) converges to \(\overline{W(K)}\) in the sense of Hausdorff.

Proof. We have
\[
e(K_n, K) = \sup_{x \in K_n} d(x, K) \to 0, \quad \text{with} \quad d(x, K) = e(\{x\}, K).
\]
The continuity of the mapping \(x \mapsto d(x, K)\) and the fact that \(K_n\) and \(K\) are compact set imply the existence of \(x_n \in K_n\) and \(z_n \in K\) such that:
\[
e(K_n, K) = \|x_n - z_n\| \to 0.
\]
We also have
\[
e(\overline{W(K_n)}, \overline{W(K)}) \leq e(\overline{W(K_n)}, \overline{W(z_n)})
\]
\[
= \sup \{d(\alpha_n, \overline{W(z_n)}), \alpha_n \in \overline{W(K_n)}\}
\]
\[
= d(t_n, \overline{W(z_n)}),
\]
with
\[t_n \in \overline{W(K_n)} = \bigcup_{A \in K_n} \overline{W\{A\}}. \]

Then
\[e(\overline{W(K_n)}, \overline{W(K)}) \leq e(\overline{W(A)}, \overline{W\{z_n\}}), \]
where
\[A \in K_n \quad \text{and} \quad t_n \in \overline{W(A)}. \]

And thus
\[e(\overline{W(K_n)}, \overline{W(K)}) \leq \|A - z_n\| \leq \|y_n - z_n\| \to 0. \]

Proposition 27. Let \(K, K' \in \mathcal{K}(\mathcal{A}) \). Suppose that for all \(A \in K \) and \(B \in K' \), \(AB = BA \). Then
\[h(\sigma(K), \sigma(K')) \leq h(K, K'). \]

Proof. The continuity of the norm in \(\mathcal{A} \) and the compactness of \(K \) and \(K' \) provide
\[e(K, K') = \|y - z\|, \quad y \in K \text{ and } z \in K'. \]
We have
\[e(\sigma(K), \sigma(K')) \leq e(\sigma(K), \sigma(z)) = e(\sigma(\{t_n\}), \sigma(z)), \]
where \(t_n \in \sigma(K) \). Then, there exists \(A \in K \) such that \(t_n \in \sigma(A) \), and
\[e(\sigma(K), \sigma(K')) \leq e(\sigma(A), \sigma(z)), \]
\[\leq \|A - z\| \quad ([2]) \]
\[\leq \|y - z\| = e(K, K') \]
\[\leq h(K, K'). \]

The following corollary is satisfied in the univocal case [2, page 49].

Corollary 28. Let \(K_n, K \in \mathcal{K}(\mathcal{A}) \) be such that for all \(a_n \in K_n \) and all \(b \in K \), \(a_n b = ba_n \). If the sequence \((K_n)\) converges in the sense of Hausdorff to \(K \), then \(\sigma((K_n)) \) converges in the sense of Hausdorff to \(\sigma(K) \).
Definition 29. For $K \in \mathbb{K}(\mathcal{B}(H))$ we set
\[O(K) = \{ (Ax, y) : A \in K, \|x\| = \|y\| = 1, \langle x, y \rangle = 0 \} \]
and
\[d(K) = \sup_{z \in O(K)} |z| = |O(K)|. \]

Proposition 30. $O(K)$ is a disk centered at the origin and with radius $d(K)$.

Proof. For all $A \in K$, $O(\{A\})$ is a disk centered at the origin and with radius $d(\{A\}) = \sup_{z \in O(\{A\})} |z|$, [8]. We have
\[O(K) = \bigcup_{A \in K} O(\{A\}) \text{ and } d(K) \leq |K|. \]
Then $O(K)$ is a disk centered at the origin and with radius $d(K)$. \[\square\]

Proposition 31. For $K \in \mathbb{K}(\mathcal{B}(H))$, we have
\[d(K) = \inf_{\lambda \in \mathbb{C}} |K - \lambda I|. \]

Proof. Since
\[d(\{A\}) = \inf_{\lambda \in \mathbb{C}} \|A - \lambda I\| \leq \inf_{\lambda \in \mathbb{C}} |K - \lambda I|, \]
then
\[d(K) = \sup_{A \in K} d(\{A\}) \leq \inf_{\lambda \in \mathbb{C}} |K - \lambda I|. \]
For the reverse, we have that for all $\lambda \in \mathbb{C}$ and all $A \in K$,
\[|K - \lambda I| \geq \|A - \lambda I\|, \]
and then, for all $A \in K$,
\[\inf_{\lambda \in \mathbb{C}} |K - \lambda I| \geq d(A). \]
Thus
\[d(K) \leq \inf_{\lambda \in \mathbb{C}} |K - \lambda I|. \] \[\square\]
Proposition 32. For $K \in \mathcal{K}(\mathcal{B}(H))$ we have

$$|K| \leq 2w(K) - \frac{w'(K)}{|K|},$$

where

$$w'(K) = \inf \{|z| \in W(A) : A \in K\}.$$

Proof. Remark that

$$Ax = \langle Ax, x \rangle x + \langle Ax, y \rangle y,$$

with $\langle x, y \rangle = 0$,

then

$$\langle Ax, Ax \rangle = \langle Ax, x \rangle \langle x, Ax \rangle + \langle Ax, y \rangle \langle y, Ax \rangle = |\langle Ax, x \rangle|^2 + |\langle Ax, y \rangle|^2.$$

The product operator $M_{2,A,B}$ defined on the Hilbert-Schmidt space $C_2(H)$, fitted with the scalar product

$$\langle X, Y \rangle = \text{tr}XY,$$

is given by

$M_{2,A,B}(X) = AXB, \ A, B \in \mathcal{B}(H)$,

and satisfies [15]

$$w(M_{2,A,B}) \leq w(A) \|B\|.$$

Set

$$X = \frac{\sqrt{2}}{2} x \otimes x + \frac{\sqrt{2}}{2} y \otimes y.$$

Then the norm of X in $C_2(H)$ is equal to 1. Then we have

$$\langle M_{2,A,A}(X), X \rangle = \frac{1}{2} |\langle Ax, x \rangle|^2 + \frac{1}{2} |\langle Ax, y \rangle|^2 + \frac{1}{2} |\langle Ay, x \rangle|^2 + \frac{1}{2} |\langle Ay, y \rangle|^2$$

$$= \frac{1}{2} \|Ax\|^2 + \frac{1}{2} |\langle Ay, y \rangle|^2 + \frac{1}{2} |\langle Ax, x \rangle|^2$$

$$\leq w(A) \|A\|.$$

Thus

$$\|Ax\|^2 \leq 2w(A) \|A\| - |\langle Ay, y \rangle|^2,$$
and
\[\|A\|^2 \leq 2w(A)\|A\| - w^2(A). \]

We conclude
\[\|A\| \leq 2w(A) - \frac{w^2(A)}{\|A\|}, \]
and
\[\sup_{A \in K} \|A\| \leq 2 \sup_{A \in K} w(A) - \frac{\inf_{A \in K} w^2(A)}{\sup_{A \in K} \|A\|}, \]
that is to say
\[|K| \leq 2w(K) - \frac{w^2(K)}{|K|}. \] (6)

In the single valued case the inequality (6) generalizes the following inequality [13]:
\[\|A\| \leq 2w(A). \] (7)

Corollary 33. If \(w'(K) \neq 0 \), then
\[|K| < 2w(K). \]

In the following example we have equality in (6) but not in (7): let \(r > 0 \), then for \(K = \{re^{i\theta} I : \theta \in [0, 2\pi]\} \) we have \(|K| = r = w(A) = w'(A)\).

Proposition 34. For \(K, K' \in K(\mathcal{B}(H)) \) we have
\[|KK'| \leq \left(w(K) - \frac{w^2(K)}{2|K|} \right) |K'| + \left(w(K') - \frac{w^2(K')}{2|K'|} \right) |K|. \]

Proof. By (6) we have \(\frac{1}{2}|K| \leq w(K) - \frac{w^2(K)}{2|K|} \) and \(\frac{1}{2}|K'| \leq w(K') - \frac{w^2(K')}{2|K'|} \). On the other hand, we have \(|KK'| \leq |K||K'| \), hence the desired inequality. \(\blacksquare \)

Proposition 35. Let \(K, K' \in K(\mathcal{B}(H)) \). Then
\[W(KK') \subset I_{K,K'} + O(K)O(K'), \]
and
\[w(KK') \leq w(K)w(K') + d(K)d(K'), \] (8)
where
\[I_{K,K'} = \{ \langle Ax, x \rangle \langle Bx, x \rangle : \|x\| = 1, A \in K, B \in K' \}. \]
Proof. Let $x \in H$ be such that $\|x\| = 1$. Then, $Bx = \langle Bx, x \rangle x + \langle Bx, y \rangle y$, with $\|y\| = 1$ and $\langle x, y \rangle = 0$, and thus,

$$\langle ABx, x \rangle = \langle Bx, x \rangle \langle Ax, x \rangle + \langle Bx, y \rangle \langle Ay, x \rangle,$$

and the result follows.

Remark 36. If in the inequality (8) K and K' are, respectively, replaced by A^* and A we obtain the following inequality due to Dragomir [11]:

$$\|A\|^2 \leq w^2(A) + d^2(A).$$

Proposition 37. Let K be an element of $\mathbb{K}_1(A)$, and let P be the polynomial with complex coefficients defined by

$$P(X) = \sum_{i=0}^{n} a_i X^i = a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n.$$

Then

$$\sigma(P(K)) \subset P(\sigma(K)).$$

If further $A = B(H)$ and K is normal, then

$$W(P(K)) \subset \text{co } P(W(K)).$$

Proof. It suffices to use (1) and (3) of Propositions 19 and 20, respectively.

Finally we end with the following spectral theorem:

Theorem 38. Let K be an element of $\mathbb{K}_1(A)$, then

$$\sigma(S(K)) \subset S(\sigma(K)).$$

If further, $A = B(H)$ and K is normal, then

$$W(S(K)) \subset \text{co } S(W(K)).$$

Proof. Firstly, we prove (9). For this, let $\lambda \in \sigma(S(K))$ and verify $\lambda \in S(\sigma(K))$. There exists $A \in S(K)$ such that $A - \lambda I$ is not invertible. That is to say, $A = \sum_{i=0}^{\infty} a_i x_i$, $x_i \in K$ and $\lambda \in \sigma(A)$. However, $A = \lim A_n$ with $A_n = \sum_{i=0}^{n} a_i x_i$, $x_i \in K$ and $A_n \in S_n(K)$. Then $A_n A_p = A_p A_n$, for all $n, p \in \mathbb{N}$, $h(\sigma(A), \sigma(A_n)) \rightarrow 0$ [2]. We have

$$e(\{\lambda\}, \sigma(A_n)) \leq h(\sigma(A), \sigma(A_n)) \rightarrow 0.$$
Therefore \(e(\{\lambda\}, \sigma(A_n)) = \|\lambda - \lambda_n\| \), where \(\lambda_n \in \sigma(A_n) \) and \(\lambda = \lim \lambda_n \). Thus,
\[
\lambda_n \in \sigma(A_n) \subset \sigma(S_n(K)) \subset S_n(\sigma(K)).
\]
The last inclusion is due to Proposition 37. Therefore,
\[
e(\{\lambda\}, S(\sigma(K))) \leq e(\{\lambda\}, \{\lambda_n\}) + e(\{\lambda_n\}, S_n(\sigma(K))) + e(S_n(\sigma(K)), S(\sigma(K))).
\]
By Theorem 11, we have
\[
e(S_n(\sigma(K)), S(\sigma(K))) \to 0.
\]
In addition,
\[
e(\{\lambda\}, \{\lambda_n\}) = \|\lambda - \lambda_n\| \to 0,
\]
and
\[
e(\{\lambda_n\}, S_n(\sigma(K))) = 0, \text{ since } \lambda_n \in S_n(\sigma(K)).
\]
So \(\lambda \in S(\sigma(K)) = S(\sigma(K)) \). The last equality follows from Theorem 8. Inclusion (10) is the same as (9) by replacing the multifunction \(\sigma(K) \) by the multifunction \(W(K) \), with values in \(\mathbb{K}(\mathbb{C}) \).

References

[8] M.K. CHRAÏBI, Domaine numérique de l’opérateur produit \(M_{2,A,B} \) et de la dérivation généralisée \(\delta_{2,A,B} \), *Extracta Math.* 17 (1) (2002), 59–68.

