Numerical construction of the Aizenman-Wehr metastate

J. J. Ruiz-Lorenzo

with A. Billoire (Paris), L. A. Fernández, V. Martín-Mayor (Madrid)
E. Marinari, A. Maiorano, G. Parisi, F. Ricci-Tersenghi (Rome),
J. Moreno-Gordo (Zaragoza)

Dep. Física & ICCAEx (Univ. de Extremadura) & BIFI (Zaragoza)
http://www.eweb.unex.es/eweb/fisteor/juan/juan_talks.html

Leipzig, December 1st, 2017

Outline of the Talk

- What are spin glasses?
- Different Theories and Models (Droplet, Chaotic Pairs and RSB).
- Phases and Thermodynamic limit in Pure systems.
- Phases and Thermodynamic limit in Disordered systems: The Metastate.
- Numerical Construction of the Aizenman-Wehr Metastate
 - Construction of the Aizenman-Wehr Metastate
 - Observables and Numerical Simulations.
 - Results.
- Conclusions.
What are Spin glasses

- Materials with disorder and frustration.
- Quenched disorder.
- Canonical Spin Glass: Metallic host (Cu) with magnetic impurities (Mn). RKKY interaction between magnetic moments:
 \[J(r) \sim \frac{\cos(2k_F r)}{r^3}. \]
Some Definitions

- The typical Spin Glass Hamiltonian:

\[H = - \sum_{i,j} J_{ij} \sigma_i \sigma_j \]

\(J_{ij} = \pm 1 \) with equal probability.

- The order parameter is:

\[q_{EA} = \langle \sigma_i \rangle^2 \]

Using two real replicas:

\[H = - \sum_{i,j} J_{ij} (\sigma_i \sigma_j + \tau_i \tau_j) \]

Let \(q_i = \sigma_i \tau_i \) be the normal overlap, then: \(q_{EA} = \langle \sigma_i \tau_i \rangle \).

[More in previous talks by Schnabel and Landau.]
The Droplet Model

- Based on the Migdal-Kadanoff implementation (approximate) of the Renormalization Group (exact in $D = 1$).
- *Disguished Ferromagnet*: Only two pure states with order parameter $\pm q_{EA}$ (related by spin flip).
- Compact Excitations of fractal dimension d_f. The energy of a excitation of linear size L grows as L^{θ}.
- Any amount of magnetic field destroys the spin glass phase (even for Heisenberg spin glasses).
- Trivial probability distributions of the overlaps.
Replica Symmetry Breaking (RSB) Theory

- Exact in $D = \infty$.
- Infinite number of phases (pure states) not related by any kind of symmetry.
- These (pure) states are organized in a ultrametric fashion.
- The spin glass phase is stable under (small) magnetic field.
- The excitations of the ground state are space filling.
- Overlap equivalence: All the definitions of the overlap are equivalent.
- Stochastic Stability. The Spin Glass Hamiltonian is “generic” under Random Perturbations.

Note: In a pure state, α, the clustering property holds:
$$\langle S_i S_j \rangle_\alpha - \langle S_i \rangle_\alpha \langle S_j \rangle_\alpha \to 0 \text{ as } |i - j| \to \infty.$$
Different Theories and Models (Comparison).

A

B

C
A state is a probability distribution (or an average, or a linear functional).

In the non disordered Ising model, we can define two pure states

$$\langle (\cdots) \rangle_+ = \lim_{h \to 0^+} \lim_{L \to \infty} \langle (\cdots) \rangle(L,h),$$

$$\langle (\cdots) \rangle_- = \lim_{h \to 0^-} \lim_{L \to \infty} \langle (\cdots) \rangle(L,h)$$

Mixtures can be analyzed via the decomposition:

$$\langle (\cdots) \rangle = \alpha \langle (\cdots) \rangle_+ + (1 - \alpha) \langle (\cdots) \rangle_-$$

In particular,

$$\lim_{L \to \infty} \langle (\cdots) \rangle(L,h=0) = \frac{1}{2} \langle (\cdots) \rangle_+ + \frac{1}{2} \langle (\cdots) \rangle_-$$
Dobrushin-Lanford-Ruelle states (locally equilibrium states).

Finite volume pure states (conditional probabilities of DLR states).

The states form a convex set. $\Gamma = \sum_i \alpha_i \Gamma_i$ with $\sum_i \alpha_i = 1$, $\alpha_i > 0$. (Mixtures)

Pure states (phases): extremal points of the convex set.

Inside a pure state, intensive magnitudes do not fluctuate, equivalently, the connected correlation functions verify the clustering property.
Phases and Thermodynamic limit in Disordered systems: The Metastate.

- Chaotic Size Dependence: The state $\Gamma_{L,J}$ does not approach a unique limit $\Gamma_J = \lim_{L \to \infty} \Gamma_{L,J}$ (when we increase the size we add additional random bonds to the Hamiltonian).

 1. Non-disordered Ising model with fixed boundary conditions (the values of the spins on the boundary change with L).
 2. The magnetization in the RFIM at low temperatures does not converge. (It is given by $\text{sign}(\sum_i h_i)$ which is a random variable).
 3. Chaotic Pairs scenario. The model presents two states (spin flip related) for any large but finite size. This pair of states changes chaotically with L.

- Newman-Stein Metastate.
 Despite the lack of limit of $\Gamma_{L,J}$, one can compute the frequency of a given state appears as $L \to \infty$. The set of these frequencies is the Newman-Stein metastate.
Construction of the Aizenman-Wehr Metastate

- Internal disorder \mathcal{I} in the region Λ_R.
- Outer disorder \mathcal{O} in the region $\Lambda_L \setminus \Lambda_R$.
- We will measure in $\Lambda_W \in \Lambda_R$.
- The wanted limit: $\Lambda_W \ll \Lambda_R \ll \Lambda_L$.

J. J. Ruiz-Lorenzo (UEx&BIFI) Numerical Construction Metastate CompPhys17
Construction of the Aizenman-Wehr Metastate

- Let us compute

\[\kappa_{\mathcal{I}, R}(\Gamma) = \lim_{L \to \infty} \mathbb{E}_\mathcal{O} \left[\delta^{(F)} (\Gamma - \Gamma_{\mathcal{I}, L}) \right] \]

- If the limit

\[\kappa(\Gamma) = \lim_{R \to \infty} \kappa_{\mathcal{I}, R}(\Gamma) \]

exists, it does not longer depend on the internal disorder \(\mathcal{I} \) and provides the AW metastate.

- The metastate-averaged state (MAS), \(\rho(s) \), is defined via

\[\langle \cdots \rangle_\rho \equiv \left[\langle \cdots \rangle_\Gamma \right]_\kappa \]

- Restricted to \(\Lambda_W \), a state \(\Gamma(s) \) is a set of probs. \(\{p_\alpha\}_{\alpha=1,...,2^{Wd}} \).

This is a point of the hyperplane \(\sum_\alpha p_\alpha = 1 \).

- The metastate is a probability distribution on this hyperplane.

- The MAS \(\rho(s) \) is the average of this distribution, and it is itself a point on the hyperplane (hence, the MAS is a state itself).
Some Observables

- The MAS spin glass correlation function:

\[C_\rho(x) = \left[\frac{\langle s_0 s_x \rangle}{\Gamma} \right]^2 = \frac{1}{\mathcal{N}_I} \sum_i \left(\frac{1}{\mathcal{N}_O} \sum_o \langle s_i^{i.o} s_x^{i.o} \rangle \right)^2 = \frac{1}{\mathcal{N}_I} \sum_i \frac{1}{\mathcal{N}_O^2} \sum_{o,o'} \langle s_0^{i.o} s_x^{i.o} s_0^{i.o'} s_x^{i.o'} \rangle \sim |x|^{-(d-\zeta)} , \]

- Remember \(\langle \cdots \rangle_\rho \equiv \left[\langle \cdots \rangle \right]_\kappa \).
- \(\zeta \) is the Read's exponent.
- \(i = 0, \ldots, \mathcal{N}_I. \mathcal{N}_I = 10 \) instances of internal disorder (\(\mathcal{I} \)).
- \(o = 0, \ldots, \mathcal{N}_O. \mathcal{N}_O = 1280 \) instances of outer disorder (\(\mathcal{O} \)).
Physics behind the ζ-exponent

- $\log N_{\text{states}}(W) \sim W^{d-\zeta}$. $\zeta \geq 1$.
- If $\zeta < d$ we have a dispersed metastate.
- Reid's conjecture $\zeta = \zeta_{q=0}$.
- The constrained (on q) equilibrium overlap-overlap correlation function is defined as:

$$G(r, q) \equiv \langle q(r)q(0) \rangle_q - q^2 \sim \frac{1}{r^{d-\zeta_q}}$$

- Above the upper critical dimension (de Dominicis et al.):
 - $\zeta_{q=0} = 4$.
 - $\zeta_q = 3$, $0 < q < q_{\text{EA}}$.
 - $\zeta_{q_{\text{EA}}} = 2$.
- Dynamical interpretation: $G_d(r, q, t) \equiv \langle q(r,t)q(0,t) \rangle$ plays the role of $C_\rho(r)$, with $R \sim \xi(t)$. [Manssen, Hartmann and Young].
Some Observables

- The (generalized) overlap on the box Λ_W:

$$q_{i;o,o'} \equiv \frac{1}{W^3} \sum_{x \in \Lambda_W} \sigma_x^{i;o} \tau_x^{i;o'}.$$

- Probability density functions of $q_{i;o,o'}$:

$$P(q) = \frac{\sum_i P_i(q)}{N_I} , \quad P_i(q) = \frac{1}{N_O} \sum_o \langle \delta(q - q_{i;o,o'}) \rangle ,$$

$$P_\rho(q) = \frac{\sum_i P_{\rho,i}(q)}{N_I} , \quad P_{\rho,i}(q) = \frac{1}{N_O^2} \sum_{o,o'} \langle \delta(q - q_{i;o,o'}) \rangle.$$

- $P(q)$ is the standard probability distribution of the overlap.
Some Observables

- Although $P_\rho(q) \to \delta(q)$ as $L \to \infty$, the scaling of its variance provides us with useful information:

 $$\chi_\rho = \sum_{x \in \Lambda_W} C_\rho(x) = W^d \int q^2 P_\rho(q) \, dq \sim W^\zeta.$$

- $P_\rho(q/(W^{-(\zeta-d)/2}))$ is Gaussian.
Numerical Simulations

- We have simulated the three-dimensional Edwards-Anderson model with periodic boundary conditions and bimodal disorder.
- We have implemented the Parallel Tempering Method (with Metropolis single spin-flip).
- We have used multispin coding (128 bits).
- Equilibration was assessed on a sample-by-sample basis.
- For large systems, the worse samples were simulated using multisite multispin coding.
- We have run on conventional supercomputers.
- We have simulated $L = 8, 12, 16$ and 24.
- The lowest temperature $T_{\text{min}} = 0.698 = 0.64T_c$
Results: the MAS overlap probability distribution

Notice that for $R/L = 3/4$ there are no finite size effects. We will take in the following the safe ratio $R/L = 1/2$.
The scaling regime extends to \(W/R = 0.75 \).
$R = L/2$, $T = 0.698$

$\chi_\rho / R^{2.3}$

$L = 8$
$L = 12$
$L = 16$
$L = 24$

$0.76(W/R)^{2.3}$

$\zeta = 2.3(3)$, to be compare with $\zeta_{q=0} = 2.62(2)$
Results: Comparison $P(q)$ and $P_\rho(q)$

$P(q)$ and $P_\rho(q)$ are different: Dispersed Metastate.
Results: ζ-exponent

\[d_U = 6 \]
\[d_L \approx 2.5 \]
\[\zeta = d \]
\[\zeta_{q=0} \]
Conclusions

- We have constructed numerically the Aizenman-Wehr metastate.
- We have found strong evidences for a dispersed metastate.
- Only RSB and CP have a dispersed metastate.
- Strong numerical support on the Reid’s conjecture $\zeta = \zeta_{q=0}$.
Some (additional) References: