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Abstract

A criterion for finding the orbital asymptotic stability of the limait eycles of the perturbed
Duffing osciliators £ -+ ¢,x + c3x° + gf(x, #) = 0, based on a method of Krylov—Bogoliubov
type that uses Jacobi elliptic functions in the approximate solution, is shown to be equivalent
to a current well-known criterion, sometimes called the Poincaré criterion. As an example,
both criteria are applied to the Puffing oscillator perturbed with the van der Pol term
S0, %) = (2 ~ px*)x.

1. iIntroduction

The well-known Poincaré criterion (Minorsky, 1962; Struble, 1962; Mickens, 1981)
to determine the stability of the limit cycles of the oscillators

%4 F(x, ) =0 (1.1)

states that a limit cycle (x,, X,) is stable if

T
j Fi(x,, x)dt > 0, {1.2)
4]

where F(x, X) = &F(x, Xx)/0%, and T is the period of x ¢} and x(f). (We shall here
present the conditions as inequalities that, when satisfied, mean that the limit cycles
are stable. The Hmit cycles are unstable if the contrary inequalities are satisfied.
Throughout the paper by stability we mean orbital asymptotic stability.) Unfortu-
nately there are very few nonlinear oscillators in which the limit cycle x,(f) is known
in an exact form. More frequently the limit cycle is given by an approximate
expression used in the Poincaré condition (1.2) for evaluating its stability, This
approximate expression is calculated by means of some method designed for the task;
pertuarbation methods, the multiple-scale method, the method of harmonic balance,
the Krylov-Bogoliubov method, amongst others. However, most methods are
strongly limited by only being applicable to weakly nonlinear oscillators:

X4 ex +ef(x, Xy=0, (£.3)

where ¢, > 0 and ¢ is a small parameter. The Krylov—Bogoliubov (KB) method has
the advantage that it can give not only the stationary solution of the oscillator x,(t),
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but also the transitory osciliations, that is, it can give the complete solution x{¢). The
KB approximate solution is

x(t) = A{z) cos(¥ (1)), (14)

where amplitude 4(t) and phase y(t) are obtained by solving the equations

i=°1 r” {(A cos i, — Aw sin ) sin ydy, (1.5)
@2 j,
in
AL . j S(A4 cos i, — Aw sin ) cos Wi (1.6)
Ao 2n j,

with @? = ¢,. It is well known (Minorsky, 1962), and indeed easily understood, that
the limit cycle is stable if [dA/dA4], < 0. (An expression with the subscript s represents
the value of this expression at the Hmit cycle.) It is also well known (Minorsky, 1962;
Mickens, 1981) that this KB-based criterion and the Poincaré criterion, though very
different in form, are equivalent.

As noted above, most of the methods used to find approximate solutions for
nonlinear osciflators are only applicable to weakly nonlinear oscillators. To overcome
this limitation several methods have been put forward for a wider class of oscillator.
One interesting class is that of the perturbed Duffing osciliators (strongly nonlinear
oscillators)

¥4 eyx 4+ 3%+ gf(x, %) =0, (1.1

where ¢, and ¢, are arbitrary and ¢ is a small parameter. The author and colleagues
have constructed methods of finding approximate solutions in terms of Jacobi elliptic
functions for this oscillator class: a method of harmonic balance (Bravo Yuste and
Diaz Bejarano, 1986; Garcia-Margailo, Piaz Bejarano and Bravo Yuste, 1988), a
Galerkin method (Bravo Yuste, 1989) and a Krylov—Bogoliubov method (Bravo
Yuste and Diaz Bejarano, 1986, 1987, 1989, 1990). Recently, Coppola and Rand
(1990} have implemented another method of KB type. This method, which we will
cali the elliptic KB (EKB) method, is completely equivalent to that given by Bravo
Yuste and Diaz Bejarano (1990) when ¢, = Qor ¢y = 0. When ¢; # 0 and ¢; % 0 the
two methods lead to the same equations for the oscillation amplitude. However, the
method of Coppola and Rand (1990) is preferable because the phase equation is
suitable for the averaging procedure even for ¢y # 0 and ¢, # 0. The use of elliptic
functions to solve nonlinear oscillators is not new: see the books of Davis (1962),
Nayfeh {1973) and Nayfeh and Mook (1979).

An advantage of the EXB method over the generalized method of harmonic
balance and Galerkin method is that it gives not only the steady solution (limit cycle)
but also the transitory motion. The study of the stability of the limit cycles is then
as straightforward as in the usual KB method. The new stability criterion is a simple
logical extension to the strongly nonlinear perturbed Duffing oscillators of the
criterion deduced from the usual KB method for weakly nonlinear oscillators
{Minorsky, 1962; Mickens, 1981).
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2. The new stability criterion deduced from the EKB method

The solution of equation (1.7} in the EKB method is given by {Coppola and Rand,
1990)

x(t) = A(t) cn[4K¢(1), m(t)] = A(r) enfyr(1), m(1)] (2.1)
with

) = —o{OAWD) snfw(e), m(] dofy®), m()], YO = J; w(s) ds — (1),
]

and where the frequency « and modulus m are given by

0 = ¢y + A = o (1 4+ ), 2.2
m = ey AH/[2cy + c34%)] = v/I2(1 + )], @2.3)

with
v = c34%/c, (24)

the nonlinearity factor. We have denoted by 4K the period of the solution:
el + 4K, m) = cn{yr, m}, where

K{m) fo0<m<l,
K=l —m K(~mi(l —m)) ifm<0, (2.5
im~ K (1/m) fm>1,

and K(z}is the complete elliptic integral of the first kind of modulus 2. The functions
cnfyr, m), sn(ir, m) and dn{ir, m) are the three basic Jacobi elliptic functions (for more
details see (Davis, 1962) or (Abramowitz and Stegun, 1972)). In the following we
shall sometimes write the Jacobi elliptic functions without their arguments.

The functions A(f) and ¢(t) are obtained by solving

A = (g/o)Xf sn dn) = g(A), (2.6)

1—2
& = % + iaa <f[cn +5 i;:1(2,' sndn — men snz)]>, (2.7)

where f = f(4don, — Awsndn), Z = Z(f, m) = EQf, m) — $E/K is the zeta elliptic
function of Jacobi, E{y, m) is the incomplete elliptic integral of the second kind
{Abramowitz and Stegun, 1972) and

1 4K
<"'>EEL oAy

is the operation of averaging over the period 4K of the Jacobi elliptic functions of
(2.6} and (2.7). In these expressions K is given by (2.5) and E by

E(m) fosmst,
E={{ —mpBPE(—mj(1 — m)) itm<0, (2.8)
FmE(/m) — ((m — y/mK(I/m)] ifm> 1,

where E(z) is the complete elliptic integral of the second kind of modulus z.
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Notice that ¢; = 0 for weakly nonlinear oscillators and then, from equation (2.3),
one has m = (. But cn(y, ) = cos ¢, sn{y, 0) = sin ¢, dn{yf, 0) = 1, 4K(m = 0) = 2=,
and then equations (2.6) and (2.7) are the well-known expressions—equations (1.5)
and (1.6}—of the usual KB method (Minorsky, 1962; Mickens, 1981). In other words,
the KB method is just a special case (weakly nonlinear oscillators) of the EKB
method.

From the amplitude eguation (2.6}, the limit cycle

xsr xAsCﬂ s Mg},
) (s ) } 29
xs(t) = - As Sn(dlss ms) dn(%, ms)
is stable if, as in the KB method,
[dA/dA]), = [dg/dA], < 0. (2.10)
The Poincaré criterion in our case is
4K
J Fi[ A, en(,, my), —a A, sn(y,, mg) dn(f, m)]de > 0, (2.11)
0

where F| = g 8f/0%. At first sight the new criterion based on the EKB method,
equation (2.10), and the Poincaré criterion, equation {2.11), seem very different.
However, we shall show in the next section that the two criteria applied to the van
der Pol-Duffing oscillator

X4 eyX 4 03x° = el — Bx)x, (2.12)

with «/ff > 0, lead to identical results. This very interesting oscillator appears in the
analysis of flow-induced oscilators (Holmes, 1977) and lasers with a saturable
absorber (Antoranz and Rubio, 1988). A study of this equation using differentiable
dynamics can be found in (Holmes and Rand, 1980) or in {Guckenheimer and
Holmes, 1983).

That the two criteria lead {0 the same resuits for this oscillator is not accidentak
in section 4 we shall show that the two criteria are equivalent.

3. An example: the van der Pol-Duffing oscillator

The eqguation of the van der Pol-Duffing oscillator is given by (2.12). By using
equation (2.6} we obtain

A = g(A) = e[adsn? dn?> — pdsn? en? dn?d AT = o(f — fA?) = si(1 — A¥/G) (3.1
with (Byrd and Fricdman, 1971)

(sn? dn?S = _}m m—~ DE+ (1~ m)K’ (3.2)
Im K

sn? en? dn®) = (1/15m*)[my(m — DK + 2Um* + mEYK, (3.3)
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Nonlineasity factor

Fig. 1. The functions G and H versus the nonlinearity factor v. With the Poincaré criterion,
when ¢ > 0 the Emit cycle with nonfinearity factor v, will be stable (unstable) if G{v,} is greater
{smaller) than H(v,). With the new criterion, when ¢ > 0 the limit cycle with nonlinearity factor
v, will be stable {unstable) if the line tangential to the curve G at v, passes above (below) the
origin. The limit cycle with v, = —2.164 and A} = 2.877 (for which G is equal to H and the
line tangent to G at v, passes through the origin) is semistable. The two criteria thus lead to
tdentical results

my =1 —m, & = adsn? dn®>, § = p¢sn? on? dn?) and
G{m) = &/8. (34

In these relations K is given by (2.5) and E by (2.8).

From equation (3.1) 4 = 0 when A% = G(A). Thus, for amplitudes that satisfy this
equation, the van der Pol-Duffing oscillator has a limit cycle. Instead of solving this
equation it is preferable to solve the system

A= G(v), A? = v/c,. (3.5)

The last equation (3.5}, comes from the definition of the nonlinearity factor v given
by relation (2.4). Notice that the value v, for which the system (3.6} is satisfied gives,
by means of equations {3.5),, {2.2), (2.3) and €2.9), the limit cycle of the oscillator.
The function G(v) for a/f = 1 is shown in Fig. 1. To obtain the amplitude 4, and
the value v, of the limit cycle for a given oscillator with some determined coefficients
¢, and c,, we simply plot the straight line 42 = ¢;v/c; —equation (3.5),~and the
curve G(v)—equation {3.5),—so that their intersection gives v, and 4,.

We shall now study the stability of these limit cycles by using the criterion of
Poincaré and the new criterion based on the EKB method. For the van der
Pol-Duffing oscillator Fy(x, %) = —&{x — fx?), evalvating the integral (Byrd and
Friedman, 1971} of equation (2.11) of the Poincaré criterion, one finds, for ¢ > 0
e < 0} that the limit cycles are stable (unstable) if G > H, where

_Km | for0sme< 1 (3.62)

H=Z
fE—mK
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with K = K{(m) and £ = E{(m);
= Ko*
BK ~E
with K = K(a?), E = E(a®), * = m/(1 — m), and

form=<0 {3.6b)

H="% torm>1 (3.6¢)
BE

with K = K(1?), E = E(n*) and 5* = I/m. A plot of the function H(v) for ¢/f = 1 is
shown in Fig. 1. The functions G and H are equal only for v, = v, = —2.164. In the
following we assume that z > 0. From the Poincaré criterion and from Fig. 1 one
sees that limit cycles are stable if v, < v or v, > —1, and unstableif v, < v, < — 1. The
limit cycle with v, = v_is semistable.

Using the new criterion based on the EKB method we find from (3.1) and (2.10)
that the limit cycles are stable if

d d
—g{A) 1 =t 824 s 1—A*GY} <. 3.7
(dAg( ))s ( dAz( / ))s 3.7
In the following we assume that ¢ > 0. As {sn dn)*)> > 0 for all v (except v = —2
and v = ~ 1}, after some simple operations we find that the limit cycle is stable if
d
— G <1 38
FYE (3.8)

or, in terms of the nonlinearity factor v, if

4 G<n. (3.9)

¢y dv
Therefore, when cy/¢; > 0, the limit cycle of amplitude A, is stable if dG/dv < ¢, /c,,
and, when cqfe; <0, the limit cycle of amplitude A, is stable if dG/dv > ¢ /e,
Referring to Fig. 1 these results can be reformulated as follows. If the tangent to the
curve G at the point (v,, A2) crosses the ordinate axis above the origin (0, ), then the
Hmit cycle of amplitude 4, is stable, that is, the limit cycles with v, < v, or v, > —1
are stable; if the tangent crosses below the origin the limit cycle is unstable, that is,
the limit cycles with v, < v; < —1 are unstable, For v, = v, the tangent passes through
the origin and the limit cycle is semistable. Therefore, one finds that the Poincaré
criterion and the new EKB-based criterion lead to identical results and conclusions
for the van der Pol-Duffing oscillator. In the next section we shall show that this is
valid for any osciilator.

4. Proof of the equivalence of the two criteria

We shall show the equivalence of the present EKB based criterion and the Poincaré
criterion by demonstrating that

(6 (A)) = me(ij"”‘_a flAen, — Asndn)dw) 4.1)
a4 %%Y) T Tak ), ox T - ‘
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From the expression for g{4) of equation (2.6), one has

2 d {1 4K 1 d'r"

S ) R [ e— - sndn df + g sndndyfr, (4.2

LIV EYEN ) | o PORPRV P N R

where we simply write f for /(A4 cn, — w4 sn dn). The first integral, evaluated for the
limit cycle, is zero because it is proportional to g(A4) and g{4) is zero for A = A,.
The second integral is

d 4K 4K d dK
1 L Seandndyfr = L 71 [fsndnldf + 4 A Jsn{dK, m) dn{d4K, m}. (4.3)

But sn{4K, m) = 0 and & cn/dy = cn, = —sn dn. Then (4.2) becomes

2 11 % 4
(EEQ(A))BWWS(EEL oy !I/+——.[ fcnwdlf/> (4.4)

Changing the derivative order of ¢n, 4 in the last integral and integrating by parts
one finds that

4K ar
f fdAcn dyp = J f‘—“cngd'}’f [f en,J8% J . —

dyp. (45
. dww (4.3)

The bracket is zero since f and cn, are periodic functions of period 4K. Therefore
{4.4) becomes

8 YA N0 B R SPVENE UE BN f)
(W‘A’)f 8(LEZEL YaW o), Ty @9

But
dof _ dfox  of ox
T g 47
Ay ox 0 o% é‘w @7
and as x = Acny and X = Aw cn, = — 4w sndn at the limit cycle, one has
%—a—ffi cn +5{Am chy,, (4.8
Also
df  of ox  of 0%
A A N 4.9
dA dx 34 0% 84 49)
and thén
4 8 | é
;‘émal[cn + Acn,l +8f [—A(Aw) °n, + Aw cn,m] (4.10)

Putting (4.8) and (4.10) into (4.6) one obtains, after some algebra,

8 (11 * gf
(o).~ -], Eemem

N J“ of (3(Aw)

5\ 75 {en,)? + Awlcn,,cn, — cn,, an]) dw}. 4.1
0 x
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But
€N, €t — Ch,, €N = M {CN,,, o, — Ry, O, ] = —msn®/2 (4.12)

and \

sn* = 1 — 2¢n® + cn,

(an)z = [ —m+ (2m— 1yon?* — men®,

HwA) (4.13)

——=02m + Hw,

aq = )

me = 2m(1 — Im)/A.

/
Then, using (4.12) and (4.13), it is not too difficult to deduce that

e {en,)? + Awlen,, en, — en,, eny] = @ + weny, cn. (4.14)

Therefore equation (4.11) becomes

] _ 1 4K df _}__E__ 4K ?[_ f{ j| }
(ﬁg(x&))s« S{QJ; S ) [axcnw+5xmcnw en dyr : (4.15)

But the term in the brackets is equal to [df/0¢ I/ A—see equation (4.8)—and then

2 1[4 gr 11 (g
L. PN B S d 4 LI R _ 4.1
(aA g(A))s 3(41( J; % k), w™ d‘!’)s (4.16)

Integrating the last integral by parts, one finds that

(I, Gmse) - (wmie= [ rens)
Zeendy ] o= [f endd® -~ fendy ] =0, 4.1
o 5‘!’ 5 O s

This is because i) the bracketed term is zero since, in the limit cycle, f and cn are
periodic functions of period 4K, and (ii} the second integral evaluated for the limit
cycle is zero because this integral is proportional 1o g{A). Therefore, since the second
integral of (4.16) is zero for the limit cycle, the relation (4.1) is verified.

5. Conclusions

In this paper we have described a new criterion for evaluating the stability of limit
cycles for a class of strong nonlinear oscillators: the perturbed Duffing oscillators
%+ €.x + e3x + ¢f(x, %) = 0. This new criterion is based on a method of Krylov-
Bogoliubov type that uses Jacobi elliptic functions in the approximate solution. We
have applied this new criterion and the well-known criterion of Poincaré to the van
der Pol-Duffing oscillator obtaining identical results. We saw that this is not
accidental: in section 4 we proved in a general form that the two criteria are equivalent
for any oscillator.
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