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A simple explicit expression for the Laplace transform of rg(r) for 3D square-well fluids is 
proposed. The model is constructed by imposing the following three basic physical requirements: (a) 
lim,,, +g(r) = finite, (b) lim,,cS(q) = finite, and (c) lim,,,,-g(r>llim,~x,+g(r)=exp($ksr). 
When applied to 1D square-well fluids, the model yields the exact radial distribution function. 
Furthermore, in the sticky-hard-sphere limit [X + 1, E+ ~0, (X - 1 )exp(ElkgT)= finite] the model 
reduces to Baxter’s exact solution of the Percus-Yevick equation. Comparison with Monte Carlo 
simulation data shows that the model is a good extension of Baxter’s solution to “thin” square-well 
fluids. For “wide” square-well fluids the model is still an acceptable approximation even for 
densities slightly above the critical density and temperatures slightly below the critical temperature. 

I. INTRODUCTION 

The study of square-well (SW) fluids is important as a 
means to understand the behavior of real fluids at and out of 
equilibrium, The SW interaction potential is 

i 

co , r<u 

q(r)= -E, a<r<Xu (1.1) 

0, r>hu, 

where (T is the diameter of the hard core, E is the well depth, 
and (X - 1) (T is the well width. The equilibrium properties of 
a SW fluid depend on the values of three dimensionless pa- 
rameters: the reduced number density p* = pa3, the reduced 
temperature T* = kBT/E (ks being the Boltzmann constant), 
and the width parameter X. In the limits A+ 1 and/or e--+0 
(i.e., T*+m), the SW fluid becomes the hard-sphere (HS) 
fluid. On the other hand, the sticky-hard-sphere (SHS) fluid’ 
is obtained by taking the limits X+ 1 and ~+a (i.e., 
T* -+ 0) while keeping the parameter 

7 -1=1q1-~-l)pT* (1.2) 

constant. In the limit r-‘-+0, the SHS fluid reduces to the 
HS fluid. Thus, at a given density p*, the parameter space 
for SW fluids can be taken as the plane (T- ‘,X), it reduces 
to the line ( T- ‘,A = 1) for the SHS fluid and it shrinks to the 
point ( T- ’ ,X) = (0.1) for the HS fluid. This geometric pic- 
ture shows that the generalizations from HS to SHS and from 
SHS to SW are not trivial at all. 

Despite the mathematical simplicity of the SW potential, 
no analytical solution of the conventional integral equations 
for fluids (YBG, HNC, Percus-Yevick, . ..) is known.’ There- 
fore, information about the radial distribution function and 
the structure factor of SW fluids is usually obtained via 
Monte Carlo (MC) simulations, numerical solutions of inte- 
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gral equations, or perturbation theory.3-7 The mean spherical 
approximation of Sharma and Sharma’ provides an analytical 
expression for the structure factor, but it is not consistent 
with the hard core exclusion constraint. 

The most popular integral equation is, perhaps, the 
Percus-Yevick (PY) equation.2 It is exactly solvable for the 
HS interaction’ and, more generally, for the SHS 
interaction.’ This is important, since the SHS fluid can be 
used to model the thermodynamical and structural properties 
of “thin” SW fluids (i.e., with XC 1. 1).10-‘2 Recently, these 
very short-ranged SW interactions have been used to explain 
the properties of systems such as colloidal particles, micro- 
emulsions, and micelles.7~‘2-14 

The aim of this paper is to propose a quasi-analytical 
model for the radial distribution function (RDF) g(r) and, 
equivalently, the structure factor S(q) of SW fluids. The 
model is constructed by assuming for a function F(t) related 
to the Laplace transform of rg(r) a form suggested by its 
exact low-density behavior and consistent with the following 
physical requirements: (a) g(r) is finite at r= u, (b) S(q) is 
finite at q = 0 or, equivalently, the isothermal compressibility 
is finite, and (c) y(r)=e’+‘(‘)‘kBTg(r) is continous at r=Xa. 
We have recently shown15-‘7 that the same method as ap- 
plied to the HS and SHS cases yields the respective exact 
solutions of the PY equation. Therefore, our model can be 
seen as a generalization to SW fluids of the analytical expres- 
sions obtained from the PY equation for HS and SHS fluids. 
Consequently, the model is especially useful for short-ranged 
SW fluids, its quality worsening as X increases. 

This paper is organized as follows. Basic definitions and 
useful equations are presented in Sec. II. The model is intro- 
duced and worked out in Sec. III. Section IV deals with the 
comparison with MC simulation results. The paper ends with 
a brief discussion in Sec. V. 

II. BASIC DEFINITIONS 

The RDF g(r) of a fluid is directly related to the prob- 
ability of finding two particles separated by a distance r.2 
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g(l+)=f,(O)= limt2F(t). (2.7) 
t-m 
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Thus, it contains information about the spatial structure as 
well as the thermodynamic properties of the fluid. In real 
fluids the RDF can be determined from neutron or x-ray 
diffraction experiments, which measure the static structure 
factor S(q). Both quantities are related by Fourier trans- 
forms: 

On the other hand, according to Eq. (2.4), the behavior of 
G(t) for small t determines the value of S(0): 

1 -S(O) 
G(t)=tm2+const+--- 

24~ 
t+o(t2). 

S(q)= 1 +p dre-iq’rh(r), 
s (2.1) 

where h(r) = g ( r) - 1 is the net correlation function and p is 
the number density. A formal representation of g(r) is given 
by means of a power series expansion: 

co 
y(r)=e’P(‘)‘ke*g(r)= I+ C y,(r)@. 

?l=l 
(2.2) 

From a practical point of view, however, this representation 
is only useful at low densities. The exact expression of 
yl(r) for SW fluids is given, for instance, in Ref. 18. 

Henceforth we will restrict ourselves to three- 
dimensional fluids with a hard core at r= (T. Let us now 
introduce the Laplace transform G(t) of rg( r) : 

G(t) = 
I 

mdre-“rg( r), 
I 

(2.3) 

where we have taken the hard-core diameter cr as length unit. 
We take the Laplace transform of rg( r), rather than that of 
g(r), in order to relate it in a simple way to the Fourier 
transform of g(r). Thus, the structure factor can be obtained 
from G(t) as 

S(q)= 1-24~Relimt-‘[G(r)-t-2], 
t-+iq 

(2.4) 

where 7~ = (7~/6) p*. The isothermal compressibility is 
directly connected to S(0). In previous works,15-17 we have 
found it convenient to define an auxiliary function F(r) 
through the relation 

F(r)e-’ 
G(r)=t 1+ 127/+(t)e-’ 

=n$, (- 12~)n-‘t[F(t)]“e-n’. (2.5) 

Laplace inversion of Eq. (2.5) provides a useful representa- 
tion of the RDF: 

g(r)=r-1g (- 12~)n-‘f,(r-n)@(r-n), 
?t=l 

(2.6) 

where f,( r) is the inverse Laplace transform of t[ F( t)]” and 
O(r) is Heaviside’s step function. Only the n first terms in 
the summation are needed to determine g(r) for r< n + 1. 
The series (2.2) and (2.6) are quite different; while the coef- 
ficients y,(r) in Eq. (2.2) are density-independent, the coef- 
ficients f,(r) in Eq. (2.6) do depend on density. 

Thus, the knowledge of F(t) is fully equivalent to that 
of g(r) or S(q). In particular, the value of g(r) at contact 
point, g( 1 ‘), is given by the asymptotic behavior of F(r) 
for large t: 

On physical grounds, both g( 1’) and S(0) must be finite in 
a disordered fluid. The first condition yields, on account of 
4. (2.7), 

F(t)-C2, t-+a. (2.9) 
By inserting Eq. (2.8) into the first equality of Eq. (2.5), the 
condition S(0) = finite fixes the first five terms in the expan- 
sion of F(t) in powers of t: I5 

F(t)= -& 
I+277 2+7? 

1+t+‘-r2+- - 
t3+ 77 2 1277 247 

It is remarkable how these two rather weak conditions re- 
strict so much the behavior of F(t) for large and small t. 
Nevertheless, there are still an infinite number of forms for 
F(t) compatible with Eqs. (2.9) and (2.10). In fact, both 
equations are so general that they do not include the tem- 
perature and apply to any hard-core potential. In order to 
gain insight into the features of F(f) which are characteristic 
of a given potential, it is useful to consider its exact form up 
to first order in density. In the case of a SW fluid with h<2, 
one can get from Ref. 18 the following structure for F(t): 

F(t)=R(t)-R(t)e-(A-‘)‘, (2.11) 

where 

R(t)=t-s(l+x)(l+t)+t-s{12(1+x)(1+t) 

+6[2x2(X2- 1)+x(2X2-3)- l]t2 

-2[2x2(X- 1)2(2X+ 1)+x(4X3-6X2+3)+ l]t3 

+[3x3(X2- 1)2+2x2(A- 1)(3X3-X2-4X-4) 

+~(3A~-88X~+~)+;]t~}~+~~~), (2.12) 

~(t)=t-3x(1+At)+t-6x{12(1+At) 

+6[2x(A2- 1)+X2-2]t2 

+2[2x(A- 1)2(A+2)+(A-2)(A2+2A-2)]f3 

+[3x2(A2- l)2+x(A-3)(A- 1)(X2+4X+ 1) 

+;A(A-2)2(A+4)]t4}~+@(vy2). (2.13) 

In these equations, x=e”r*- 1. Equations (2.10)-(2.13) 
show that F(t) is singular in the double limit t-+0, v+O. 

III. THE MODEL 

All the equations of the previous sections are exact. Our 
objective now is to propose a simple functional form for 
F(t) consistent with the behaviors (2.9) and (2.10). In the 
HS and SHS cases,i5-17 we proposed rational-function 
forms, i.e., Padd approximants, for F(t). The approximations 
containing the least number of parameters turned out to co- 
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incide with the corresponding solutions of the PY equation. Equation (3.1) is sufficient to satisfy the requirement (2.9), 
Following the same line of reasoning and taking into account so that Eq. (2.9) does not impose any constraint on E(t). We 
the exact low density behavior, Eqs. (2.11)-(2.13), we pro- 
pose rational forms for R(r) and R(t) in Eq. (2.11). More 

have taken for R(t) a form similar to that of R(t) because, 
according to Eqs. (2.12) and (2.13), both functions have a 

specifically, similar structure in the low-density limit. In addition, we 
1 A(O) have chosen a common denominator in order to recover the 

R(r)= -- 
1217 1 +S(14+S(*42+S(3)t3 ’ (3.1) SHS form for F(t) in the limits A+ 1, x+m, 

x( A - 1) = fixed. l6 
1 

R(t)= -- 
#O)+~i(l)t 

1277 1 +S”++S’2’t2+S(3v~ (3.2) Thus, the function F(t) is given in our model as 

1 1 
F(t)= 

+L(1)t+L(2)t2-[A(o)+L(2)(A- l)-‘t][e-(‘-‘)‘- 1+(X- l)t] 
-1217 1 + S(‘)t + SW + d3)t3 3 (3.3) 

where we have taken 

A(o)= 1 +A(@ 

into account that 

(3.4) 

since F( 0) = - l/ 12 7, and we have called 

~(*)qj(‘)(),- 1) 9 (3.5) 
L”)~~(o’(),- 1)+,$*)-j(‘). (3.6) 

These changes have been introduced to emphasize the inter- 
pretation of Eq. (3.3) as a generalization to the SW interac- 
tion of the analytic solution of the PY equation for the SHS 
interaction. In that case, the expression for F(t) isI 

1 1 +L(‘)I+L(2)r2 
F(t)= -- 127 1 +S(‘)t+S(2)t2+S(3)r3 . (3.7) 

The model (3.3) contains six parameters to be deter- 
mined. The exact expansion (2.10) imposes four constraints 
among them. Thus, we can express four of the parameters in 
terms of, for instance, AC’) and Lc2). The result is 

L(‘)=&l + $17+6~~~(2)- 77(~- 1)2(3A(o)-2L(2)) 
I+27 

+(X+3)(X- 1)3A’o’], (3.8) 

S(*)=7]r-t+6AL(2)-(A-l)2(3A(O)_2L(2)) 
1+2?7 

-‘(A+3)(A- 1)3i(o)] 2 9 (3.9) 

St2)=&-$- 1 + ~+2[1-27(3X- l)]Lc2) 

-(A- 1)2[#0)+477(L(2)-A(0))] 

+~(A+3)(A-1)3~(o)} 9 (3.10) 

s(3), & (-%-[$A+ l)- 7(2X- l)]L(‘) 

+ $(A-- 1)2[,+o)+ 7j(2L’2’-A(0))] 

+i$2-~(3A+5)](A-1)3A(o) . 
I 

(3.11) 

I 

We need two additional constraints to determine the six pa- 
rameters. One of those constraints is given by the (exact) 
continuity condition of the function y(r) at r = A.2 This im- 
plies 

g(A-)=( 1 +x)g(A+). (3.12) 

Let us implement this condition on our model, Eq. (3.3). We 
denote by c(r) and s(r) the inverse Laplace transforms of 
tR( r) and tR( t), respectively. Then, if A < 2, Eq. (2.6) gives 

g(r)=r-‘C&r-l)-&r-A)O(r-A)], l<r<2. 
(3.13) 

Condition (3.12) yields 

(1 +x)$(0)=x&A- 1). (3.14) 

Now, according to our model, 

(3.15) 

where z 1, z2, and z3 are the roots of the denominator in Eqs. 
(3. I)-(3.3). Consequently, Eq. (3.14) becomes 

,(x-l)zj 
’ 

(3.16) 

where we have taken into account that 

l(O) = lim r2E( t) = - 
1 A(l) 

t-m i%jP’ (3.17) 

Equation (3.16) is a transcendent equation. Given a value of 
A(‘) the set of Eqs. (3.8)-(3.11) and (3.16) can be solved to 
yield. L(l) LC2), s(l), SC21 , and ,Sc3). All we have done is to 
propose the model (3.3) and then impose the basic exact 
conditions (2.10) and (3.12). 

It still remains to determine the parameter A(‘). Since 
we are not aware of any additional basic condition valid at 
any density, we resort to the obvious condition 
lim,,oy( r) = 1. Let us call A~“)=lim,,~(0), Li2) 
“lim,,o . L(‘) Then, the zero-density limit of Eq. (3.3) is 

J. Chem. Phys., Vol. 101, No. 3, 1 August 1994 



2358 

10 J~J11~~II,I~I/~IJ11,1111,II,I,,,,,,II,, 

0.5 
1 

)I_ ;:JY, / , ( , , I , , , , ;I 
10 15 20 2.5 3.0 

r 

FIG. 1. Plot of the first order coefficient, y,(r), in the density expansion of 
y(r) for x= 1 and h = 1.5. The solid line is the exact result, while the 
dashed line is the result obtained from the model. 

limF(r)=t-3{1 +Ab”’ 
v-0 

+[ 1 -A&0)(X- l)+Lf’(x- 1>-‘]r 

-[AbO)+L~*)(X-l)-‘t]e-(X-‘)‘}. (3.18) 

Condition (3.12) yields ,$*)=xX(X- 1). Finally, Eq. (3.18) 
becomes exact if and only if &,‘)=x. 

The evaluation of the model up to first order in density is 
carried out in Appendix A. It is proved there that the differ- 
ence Ay,( r) between the approximate and the exact first 
order coefficient in the density expansion (2.2) is 

7T r-A Ii 
Ay,(r)O(r- 1)=6 r 

1 
=+x(x- l)[(h- I)*-3(h 

+ I)(?-- l)] [O(r- I)-@(r-x)], 
I 

(3.19) 
where Ato’ is defined as the linear coefficient of the density 
expansion of A”) [see Eq. (A5)]. We see that our model 
leads to an inexact function y I (r) in the interval 1 <r< X. 
This discrepancy is not important in the case of thin SW 
potentials and disappears in the SHS and HS limits. There 
does not seem to be an obvious criterion to choose AI’). The 
criterion Ayl( I)=0 leads to A\‘)= -x( 1 +X)(X- 1)3, 
while the criterion of least mean square deviation leads to a 
positive choice of A ‘1” . 
ity, we choose A$‘)= 

As a compromise guided by simplic- 
0. Figure 1 shows the exact and the 

approximate functions y 1(r) in the case A = 1.5, x = 1 for 
this value of A 1”. 

This analysis of the low density behavior of the model 
does not suffice to determine the parameter A(‘) at an arbi- 
trary density 17. For the sake of simplicity, however, we will 
identify A”’ with its exact zero-density value, i.e., 

j(0)=x (3.20) 

Then, the remaining five coefficients of the model are ob- 
tained from Eqs. (3.8)-(3.11) and (3.16). Once these coeffi- 

0 2 4 6 6 10 12 
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0.9 

S(q) 
0.8 

0.7 

0.6 

FIG. 2. Structure factor, S(q), corresponding to a SW fluid with A = 1.1, 
77=0.07, and T*-‘=0.92. The circles and triangles are MC data taken 
from Fig. 3 of Ref. 7. The solid line is the result predicted by the model and 
the dashed line is the result obtained from the solution of the PY equation 
for SHS. 

cients are known at given values of 77, T", and A, Eq. (3.3) 
provides the explicit expression of the function F(t) in our 
model and, hence, the explicit expressions of g( r) and S(q). 
Appendix B shows that in the limit ~-+a, A -+ 1, 
x( A - 1) = I / 12 T= const, we recover the results obtained in 
Ref. 16 for the SHS potential. In that case, our model coin- 
cides with the analytical solution of the PY equation. On this 
basis, one can expect our model to be a fair approximation in 
the case of thin SW potentials. 

The same line of reasoning followed here can be easily 
applied to the one-dimensional SW fluid. This is done in 
Appendix C. It is shown there that the model coincides with 
the exact solution to the problem, which can be obtained 
from the work of Salsburg, Zwanzig, and Kirkwood.” This 
fact gives extra support to our model, Eq. (3.3), as a useful 
simple approximation. 

IV. COMPARISON WITH MONTE CARLO SIMULATIONS 

According to the previous section, we expect our model 
to be especially adequate to describe the structural properties 
of thin SW fluids. In 1984, Huang et ~1.~ performed MC 
simulations of SW fluids with A = 1.02 and A = 1.1 to repro- 
duce the main features of the structure factor of microemul- 
sions and micelles, respectively. Recently, Menon et al. ‘I 
have compared the simulation data from Ref. 7 with the PY 
analytical solution for SHS with appropriate values of T and 
7. Figure 2 shows S(q) obtained from simulation7 for 
X=1.1, T*-'=0.92, and 7~=0.07 as compared with the 
PY solution for SHS (dashed line) and with our model (solid 
line). The results show that our model correctly accounts for 
changes in S(q) associated to the non-zero width (A # 1) of 
the square well. In fact, our results are practically indistin- 
guishable from those obtained by numerical solution of the 
PY and MHNC equations,‘* the agreement with simulation 
in the small-q region being better than that observed in Ref. 
7 with a mean spherical approximation. In the case of micro- 
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FIG. 3. Plot of g( 1’) as a function of l/T* for A = 1.125 and three den- 
sities: p*=O.4 (0 and -). p*=O.6 (0 and - - -), and p*=O.8 (0 and 
- - -). The symbols represent MC data taken from Ref. 5 (l/T* # 0) and 
from Ref. 3 ( 1 /T* = 0). The lines are the results given by the model. 

emulsions (A = 1.02), the structure’ factor predicted by our 
model is hardly distinguishable from that given by the PY 
solution for SHS and both approximations agree well with 
simulation. 

Henderson and co-workers5*6 have carried out rather ex- 
tensive MC simulations of SW fluids for several values of A. 
Figures 3 and 4 show the values of g(r) at r= 1’ and 
r= A-, respectively, as functions of 1 lT* for A = 1.125 and 
p*=O.4, 0.6, and 0.8. The points at l/T*=0 correspond 
to HS, in which case our model coincides with Wertheim- 
Thiele’s solution of the PY equation and underestimates 
g( 1 +) at high densities. As the temperature decreases, both 
theory and simulation indicate that g( 1’) and g( A-) tend to 
increase. The quantitative agreement worsens at low tem- 
peratures ( 1 /T* = 2), although the theory succeeds in show- 
ing up that g(l+) and g(A-) are greater for p*=O.4 than 
for p * = 0.8 in the low temperature region. 

Figures 5 and 6 are similar to Figs. 3 and 4, but for a 
wider well (A = 1.25). As expected, the agreement is worse 
now, especially at high densities and/or low temperatures. 

*l. I I I * ,,rrr,,,, ,, ,I ,I,,# ,,,,1,,,,,,, 

5k 
i / 4 1 

0/.-,- 
,_--- 

c 
_.-- __-- ---, 

g(A-) 1 __ 3 
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__.- -; 
_,.- _.-- __.- / , _.-* ’ , 

,’ 

2 ‘2- 
$ 

_i / 

_: fl 

lo,““““““““““““““““’ 
00 05 10 1.5 2.0 

l/T’ 

FIG. 4. The same as in Fig. 3, but for g(X-). 
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

l/T * 

FIG. 5. The same as in Fig. 3, except that X = 1.25. 

Despite this, our model correctly predicts that g( l+) at 
p* = 0.8, in contrast to what happens with A = 1.125, tend 
to decrease as the temperature decreases. 

In order to assess the degree of reliability of our model 
when one goes from the HS fluid to a wide SW fluid at a 
given temperature, Fig. 7 shows g( 1’) versus A at T* = 2 
and p*=O.4, 0.6, and 0.8.*’ At the density p*=O.4 the 
agreement is excellent, even for A = 1.85, in which case 
T* = 2 is a subcritical temperature? At p* = 0.6 and 0.8 the 
agreement is reasonably good for A 5 1.5 and A 5 1.25, re- 
spectively. For wider wells, the theoretical values of g( 1 +) 
rapidly fall down and eventually the set of Eqs. (3.8)-(3.11) 
and (3.16) ceases to have a solution. 

In Figs. 3-7 we have used the points r = 1 and r = A to 
monitor the agreement between our model and simulation 
data. Now we are going to compare the respective radial 
distribution functions g(r) for some representative cases. 
From Figs. 3 and 4 we concluded that a good agreement can 
be expected if A = 1.125, even for relatively large densities 
and low temperatures. This is confirmed by Fig. 8, where the 
case p* = 0.8, T* = 1 is considered. The agreement in the 
region r > A is better than in the region 1 < r < A. This might 

3.0 F”““““““““““““““““‘d 

2.5 

cl@-) 

2.0 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

l/T ’ 

FIG. 6. The same as in Fig. 4, except that A = 1.25. 
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A 7 

PIG. 7. Plot of g( 1’) as a function of X for T*=2 and three densities: 
p*=0.4(Oand-),p*=0.6(U and---),andp*=O.8 (0 and---). 
The symbols represent MC data taken from Ref. 5 (X # 1) and from Ref. 
3 (A = 1; see Ref. 20). The lines are the results given by the model. 

be a remnant of the fact that our model is not exact to first 
order in density in the latter region. 

Let us now consider the well width h = 1.5, which is 
usually taken as adequate to model the molecular interac- 
tions in argon. Figure 9 compares g(r) obtained from simu- 
lation and from our model for the state p* = 0.5, T* = 1. 
The agreement is surprisingly good, especially if one consid- 
ers that in this state the fluid is in the liquid phase and that 
our model, by construction, is expected to yield an accurate 
representation of the structural properties of thin SW fluids 
only. On the other hand, as the density increases, the reliabil- 
ity of the model decreases. We already saw in Fig. 7 that at 
T* = 2 and p* = 0.8 the value of g( 1 +) is clearly underes- 
timated in the case X = 1.5. Figure 10 shows that the overall 
prediction for g(r) is not as poor as one might anticipate. 
The jump at r= A is described fairly well, as well as the 
behavior in the region r > X . 

It must be emphasized that the set of equations satisfied 
by the parameters of the model fail to have a solution for 
densities sufficiently high, temperatures sufficiently low, and 

t -I 

0- 
10 1.2 1.4 16 1.8 2.0 

T 

FIG. 8. Plot of the radial distribution function for A = 1.125, T* = 1, and 
p* = 0.8. The dots represent MC data taken from Ref. 6, which were plotted 
in Fig. 1 of Ref. 5. The line is the result given by the model. 
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FIG. 9. Plot of the radial distribution function for X = 1.5, T* = 1, and 
p*=O.S. The dots represent MC data taken from Ref. 4. The line is the 
result given by the model. 

wells sufficiently wide. This is the case, for instance, if 
,,*=O& T*=z 3, and X = 1.5. We have observed that this 
lack of a solution is mainly due to our choice for the param- 
eter A(‘) of its exact zero-density value, Eq. (3.20). If, in- 
stead, we adjust the value of A(‘) as to fit the simulation 
value of g( 1 +), then we get a solution. The result obtained 
in this way for p*=O.8, T*=$ and X=1.5 is compared 
with MC simulation data in Fig. 11. As expected, the agree- 
ment near the contact point is good, but deviations are quite 
apparent when approaching r= A from the left. The details of 
g(r) in the region r>X are not well described either. The 
dashed curve in Fig. 10 represents the result obtained under 
thesamecriterioninthecasep*=0.8, T*=2,andX=1.5. 
Since the temperature now is higher than before, the agree- 
ment is much better. On the other hand, this modification of 
our model implies to empirically fit the parameter A(‘). It 
would be preferable to find an independent simple criterion 
to determine A(‘) as a function of p*, T*, and A. Of course, 

1.0 1.2 1.4 1.6 1.8 2.0 
T 

PIG. 10. Plot of the radial distribution function for A = I .5, T* = 2, and 
p* =0.8. The dots represent MC data taken from Ref. 4. The solid line is 
the result given by the model (A -(‘)=x) while the dashed line corresponds , 
to a modification of the model in which the value of the parameter A(‘) is 
adjusted to fit the simulation value of g( 1 +). 
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FIG. 11. Plot of the radial distribution function for X= 1.5, T*= $. and 
p* = 0.8. The dots represent MC data taken from Ref. 4. The line corre- 
sponds to a modification of the model in which the value of the parameter 
A”’ is adjusted to fit the simulation value of g( I’). 

such a criterion should reduce in the zero-density limit to the 
one adopted along this paper, Eq. (3.20). 

V. SUMMARY AND DISCUSSION 

In this paper we have proposed a very simple model for 
the structure of a square-well (SW) fluid of (relative) width 
A - I< 1. The model consists of assuming rational forms for 
the functions R(t) and R(r) defined in Eq. (2.1 l), where 
F(t) is a function related by Eq. (2.5) to the Laplace trans- 
form G(t) of rg(r). The knowledge of F(t) allows one to 
get an analytical expression for the radial distribution func- 
tion (RDF) g(r), Eq. (2.6), as well as for the structure factor 
S(q), Eq. (2.4). We impose on our model the following three 
basic conditions: (a) g( 1’) =finite; (b) S(0) = finite; (c) 
g( A-)/8( A ‘) = exp( l/TX). By construction, the rational- 
function forms for R(t) and R(t), Eqs. (3.1) and (3.2), are 
consistent with condition (a). Then, condition (b) establishes 
five (algebraic) constraints among the seven parameters char- 
acterizing R(t) and R(t). Condition (c) yields a sixth (tran- 
scendent) constraint. In order to determine all the parameters, 
one of them must be fixed. We have chosen to assign to 
AC’) its exact zero-density value, which turns out to be inde- 
pendent of A. This closes the construction of our model. 

It must be stressed that the model is not constructed as a 
perturbation correction to the PY solution for SHS fluids. 
Consequently, it can be applied in principle to wide SW flu- 
ids. The comparison with Monte Carlo results shows a much 
better agreement than one could expect. At high densities 
(p* = 0.8, for instance) it is well-known that the PY ap- 
proximation is not good enough in the case of hard spheres. 
Thus, it is not surprising that the model fails (and eventually 
has no solution) as the temperature decreases and/or the well 
width increases. However, at moderate densities (say 
p*=O.4, which is greater than the typical critical density), 
the agreement is pretty good even for temperatures below, 
but near, the critical temperature. 

The model proposed in this paper is not fully analytical, 
since one of the equations satisfied by the parameters is tran- 
scendent. This is not surprising, as the exact solution of the 
one-dimensional problem also involves a similar transcen- 
dent equation. Nevertheless, the numerical evaluation of the 
parameters can be easily carried out.23 On the other hand, if 
the model is applied to thin SW fluids, Eq. (3.12) can be 
expanded in powers of A - 1 to yield an algebraic, rather 
than a transcendent, equation. Work is now in progress along 
this line. 
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Although conditions (a)-(c) are apparently rather vague 
and general, their implementation on the model gives rise to 
a non-trivial approximation. This is supported by two facts: 
(i) the same arguments translated to the one-dimensional 
case yields the exact solution to the problem; (ii) in the spe- 
cial limit of sticky hard spheres [A-+1, T*-+O, 
(A - 1 )exp( l/p)=finite] our model reduces to Baxter’s ex- 
act solution of the PY equation. As a consequence of the 
latter, (iii) our model reduces to Wertheim-Thiele’s exact so- 
lution of the PY equation in the particular case of hard 
spheres (A= 1 or T*-+a). 

APPENDIX A: LOW-DENSITY BEHAVIOR OF THE 
MODEL 

In the low-density limit, Eqs. (3.8)-(3.11) become, re- 
spectively, 

L(‘)=1-~~[l-n(A4-l)]+~~2), t-41) 

S(‘)=EQ?), 642) 

S(2)=-#-x(A2-l)]+@~) 7 643) 

s(3), - &+$l-X(A- l)(~~fA+ 1)]+@(77). 

644) 

The other two parameters are 

A(“)=X+A(10)7;l+@ T/72) > 645) 

L(‘)=~X(A-l)+$Lr~)77+~~77~). 646) 
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Due to the simplicity of the model, the RDF to first order 
in density is not exact in the interval 1 < r< A. This is not a 
serious drawback, since the density expansion of the RDF 
fails to converge even at temperatures and volumes signifi- 
cantly greater than the critical temperature and volume.18 

S. Bravo Yuste and A. Santos: Structure of square-well fluids 2361 

Furthermore, on the basis of the fact (ii), our model is ex- 
pected to be a good approximation in the case of thin SW 
fluids (say A or 1.1). Thin SW fluids are very useful tools to 
analyze properties of colloids, micelles, microemulsions, and 
other systems exhibiting percolation behavior.77’2-14,21 Bax- 
ter’s solution of the PY equation for SHS has been usually 
considered as an adequate model for such systems.‘0-‘2’22 On 
the other hand, our model allows one to “correct” Baxter’s 
solution by incorporating effects associated to a non-zero 
attractive-well width. 



2362 S. Bravo Yuste and A. Santos: Structure of square-well fluids 

Substitution into Eq. (3.3) yields, after some algebra, 

(‘47) 
where the low-density behavior of Fexact(t) is given by Eqs. 
(2.11)-(2.13) and we have called 

a=-3x(l+X)(A2-1), 64% 

/3=Q)+2x( 1 t-x)(X- 1)2( 1+2x), W ’) 

Li2’ 
y=-A(P)@-l)fK -x($L4-4k3fl) 

-2x2(A- 1)2(3A2+4X+2)-3~3(A2- 1)2. 

(AlO) 
From Eq. (A7) one can get the difference Ayt( r) between 
the approximate and the exact coefficient y t (r) in the den- 
sity expansion (2.2). The result is 

Ayl(~)O(r--l)=~~l(r-l)‘+P(r-l)+rl 

x[O(r- I)-@ (r-A)]. (All) 

Thus, the difference vanishes if r> A, regardless the values 
of /i(P) and L \“’ Now, the continuity condition (3.12) im- . 
plies that Ayt(A) = 0, which yields 

Li2)=n(A- 1) 3x2(X2- 1)2+x(A-1)2(5A2+ lOA+3) I 

+;(A3- 12X+8) . 1 W2) 

With this value inserted into Eq. (AIO), Eq. (All) becomes 
Eq. (3.19). 

APPENDIX B: THE STICKY-HARD-SPHERE LIMIT 

In the limit ~--+a, A-+1, x(X-1)=1/127, Eq. (3.3) 
reduces to Eq. (3.7) and Eqs. (3.8)-(3.11) become 

L(r)=(1+2g)-l(1+&?+6?7L(2)) I (Bl) 

$l,=L(-q+~L’z’) 
1+2?7 ? WI 

s(~)=&-$- I+ ~+2( 1 -477)Lc2)], (B3) 

-+ ( 1 - v)LC2) . 1 (B4) 

In the SHS limit, Eq. (3.14) is equivalent to 

(1+x)~(o>=x[5(o)+E’(o)(A-1)1. (B5) 

where ,$‘(r)=d&r)ldr. The expression for t(O) is given by 
Eq. (3.17) and a similar expression holds for t(O). As for 
c’(O), one has 

036) 

Making use of Eqs. (3.4)-(3.6) and after taking the SHS 
limit, Eq. (B5) yields 

(B7) 

Equations (B l)-(B4) and (B7) constitute the set of algebraic 
equations satisfied by the parameters of our model in the 
special case of the SHS fluid. These equations were first 
derived in Ref. 16 working directly with the SHS fluid. It 
was shown there that the results coincided with Baxter’s so- 
lution of the PY equation.’ 

When taking the SHS limit, one must distinguish 

jY’-Jiyy’(A+) 038) 
-4 

@ -;my’(l+). W) 

from 

The first quantity is 

1 0310) 

where we have taken into account that 

SW $1) 
-jm - A(‘+ . I 

(Bll) 
The result (B!O) was already obtained in Ref. 16. Regarding 
the quantity $T’, our model yields 

~=lfLm&s’w~~o)l 

=-L&+( ,tgq(L@)$ -L(‘ii] 

PM 

In the case of the PY equation, however, one getsI 

(B13) 
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APPENDIX C: ONE-DIMENSIONAL SQUARE-WELL 
FLUIDS 
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To determine A”’ we make use of the continuity condition 
(3.12) or, equivalently, (3.14), where now t(r) and E(r) are 
the inverse Laplace transforms of R(t) and E(t), respec- 
tively. The resulting condition is In the one-dimensional case, we introduce the Laplace 

transform G(t) of g(r): 

G(t)= = 
I 

dre-“g(r). 
1 

Thus, the structure factor is given by 

S(q)= 1+2vRelim[G(t)-t-l], 
t-tiq 

(Cl) 

03) 

j(O)= Ifx 
i i 

-1 
e(X- 1)/S(‘)- 1 . 

X  (C12) 

The solution of this transcendent equation, along with Eq. 
(Cll) allows one to get the parameters needed in the model, 
Eqs. (C9) and (ClO). 

where v=p*. The auxiliary function F(t) is now defined 
through the relationI 

In 1953, Salsburg, Zwanzig, and Kirkwood” succeeded 
in deriving the exact distribution function of any one- 
dimensional fluid whose particles interact via a nearest- 
neighbor pair potential. This includes the SW interaction 
with A <2 as a particular case. In this exact solution, the 
Laplace transform G(t) is given by Eq. (C3) with 

et C!(t+c) 
F(t)=- - 

17 WC) ’ 
03) 

where 

G(t) = 
F(t)e-’ m  

= C ~n-l[F(t)]“e-“‘. 
l- Nt)e--’ n=l 

(C3) 

Laplace inversion yields 
m  

g(r)= C $-*fn(r-n)O(r-n), 
n=l 

(C4) 

where now f,(r) is the inverse Laplace transform of 
[F(t)]“. Consequently, 

g( 1 +)=ft(O)= limtF(t). (C5) 
t-+-J 

In addition, from Eq. (C2) one gets 

G(r)=t-‘+ 
S(O)- 1 
-+0(t). 

277 

Since g( 1’) must be finite, we conclude that 

F(t)-r-1, t-a. (C7) 

On the other hand, since S(0) must also be finite, the first 
two coefficients in the expansion of F(t) in powers of t are 
known: 

F(t)=#+( 1-~)t]+m 

04) 

Equations (Cl)-(C8) are the one-dimensional counter- 
part of Eqs. (2.3)-(2.10), respectively, and are exact. As 
done in Sec. III, our model consists of assuming rational- 
function forms for the functions R(t) and k(t) defined in Eq. 
(2.11). The functions compatible with (C7) and (C8) contain- 
ing the least number of parameters are 

and c is a real constant determined by the condition 

1 n’(c) 
-+ 7,l n(c)=O* 05) 

In the SW case, the function Cl(t) becomes 

fi(t)=T(l +x-xc-(X-‘)‘), (CW 

so that Eq. (C13) reduces to 
1 c 1 +x-xe-(A-l)('+c) 

F(t)=- - 
5-j t+c 1 +x-xe-(A-l)c 07) 

and c is the solution of the transcendent equation 

1 1 1 +x-Axe-(“-‘)C -=-+ 
17 c 1 +x-xe-(~-“C . 08) 

Now, ' identify s(‘)= l/c 
~(“)=[ec*-l)r{l +x)lxw-el]-l, the exact expression (C17j 
coincides with that of our model, Eqs. (2.11), (C9), and 
(ClO). Equation (C18) is then equivalent to Eq. (Cll). 

(C9) 

where A(‘)= 1 +A(‘) and 

(ClO) 
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