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The problem of evaluating the number of distinct si&gt) covered up to timé by N random walkers is
revisited. For the nontrivial time regime and fde>1 we show how to get the asymptotic behaviorSpft)
and we calculate the main and first two corrective terms.afitrecorrective term decays mildly as 1MN. For
d-dimensional ¢(=1,2,3) simple cubic lattices, the main term is the volume of the hypersphere of radius
[(InN?2Dt/d]*2, D being the diffusion constant, and the corrective terms account for the roughening of the
surface of the set of visited sitds$1063-651X%99)50510-7

PACS numbs(s): 05.40.Fb, 05.60.Cd, 66.30.Dn

The behavior of a large class of natural and social systemsf Sy(t) in regimes | and Il is not difficult to understand. In
in science(physics, chemistry, ecology, and econgnean  regime | t<<t,) the number of RWs per site is so large that
be cast into the form of a random wdlk—3]. The properties every site that may be visited is effectively visited, so that
associated with the wandering ofsingle walker have been Sy(t)~At% whent<t,~InN, d, being the chemical di-
the most studie@2,3], but the diffusing properties ofsetof ~ mension[10] (d;=d for d-dimensional Euclidean lattices
random walker§RWSs) are much less known, notwithstand- and A, a constant that depends on the lattice. In regime I
ing their interesf4]. Our knowledge of so basic a quantity as (t>t/,), the RWs are so far away from each other that their
the number of distinct siteSy(t) covered byN RWS up 1o yr4ils (almos) never overlap so thaSy(t)~NSy(t). This
time t is a good example. Its properties whéh=1 have  eyer happens for lattices with spectral dimensidg
been thoroughly studiefil—3] since the problem was first =2d,/d, <2, so that, == (d,, is the anomalous diffusion

suggested5]. However, its multiparticle counterpart has . ) )
only been tackled since the recent seminal work of LarraldeGXpOnent andl; is the fractal dimension of the substiate

et al. [6,7] in which asymptotic expressions of(§ for  “\SO. One hag! ~e" for d=2 andt{ ~N? for d=3. How-
large N were found when the set of RWs, initially at the €Ver: the calculation oBy(t) for the intermediate regime
same point, diffuse with steps of finite variance on Euclidear{tx <t<t}) is much more involved and little more is known
lattices of one, two, and three dimensions. Shortly thereaftethan thatSy(t)/t% % goes asymptotically asy(In x)%"” for
this work was extended to fractal substrates by Hagtial. large N, with v=d,,/(d,—1) andx=N for d,<2, x=N/
[8]. (Subsequent generalizations and refinements have bednt for d=2 andx=N/\/t for d=3 [6-8,11. However, no
appearing since then [9].) prefactorss, were given for the Euclidean lattices [i] nor
These authors found three distinct time regimeS;ift): for the fractals lattices i8]. (Values ofs, for Euclidean
a very short-time regime or regime |, an intermediate regimeattices were given in[7,11], but, except for the two-
or regime Il, and a long-time regime or regime Ill. The value dimensional case, they do not agree with guvoreover, no
corrective term to the main asymptotic term has ever been
computed[12] and no direct comparisoifvalue against
*Electronic address: santos@unex.es value has ever been made between numerical results and
"Electronic address: acedo@unex.es theoretical values, apart from testing6,8] whether
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TABLE I|. Parameters appearing in the asymptotic expression ofvhereV(r) is the volume(number of sitesof the substrate

Sy(t), Eq. (6). The symboldD refers to thed-dimensional simple
hypercubic lattice an®2 to the two-dimensional Sierpinski lattice.
The parameterp is [2t(2D)%3]Y%p(0,1), where p(0,1)
=1.516 384 1,2]. For finitely ramified fractals it can be proved that
Ais bounded if it is a function of timgl6—1§. The values for the
Sierpinski lattice are only plausiblsee remark following Eq4)];

in particular,vg is only “almost” constant: it is really a function
that oscillates slightly around the value 3.

Case vg d; dy A c ) h,
1D 2 1 2 V2l 12 12 -1
2D T 2 2 1/Int 1 1 -1
3D  47/3 3 2 Ulpt) 312 1 -1/3
S2 3 In3/n2 In5/n2 0.613 0.981 1/2—-0.56

Sy(t)/t% /% is linear in (InX)%’” [13]. A major objective of
this Rapid Communication is to amend these deficiencie
We will see that the solutiofcf. Eq. (6)] to the problem of
calculatingSy(t) given in this Rapid Communicatiof) has

a main term that differs from that evaluated by Larraddal.

by a factor d(d,,—1)/d,,, and (ii) contains corrective terms
that are not at all negligible when compared with the main
term even for very large values offi¢cause they decay only
logarithmically withN. (This fact should be considered when
theoretical results are compared with observations, especial
when N is not very large[14].) We will connect the main
term to the(almos) compact nature of the set of visited sites,

and the corrective terms to the roughening of its surface.

Finally, our solution is precise enough to disclose the tigh
relationship betweesy(t) and the escape timé; \(r), of
the first RW of a set oN diffusing particles from a region of
radiusr [15,16. This will lead us to guess an asymptotic
expression fot, \ in Euclidean media witl=2.

Our analysis begins, as in Ref6~8], by recognizing that
Sy(t)=={1-T}(r)} for N noninteracting RWs, where the
sum is over all the sites in the lattice ahg(r) is the prob-
ability that siter has not been visited by a single RW by step
t. However, from here on our procedure departs from previ

Sy(t) after a large number of stegthus outside of the very

short time regime)| we replacel’;(r) and Sy(t) by their
continuum approximation,

Su0= | (1= TN hvodr 4

=vod(2D) 42t /gy (di— 1;002), (D)
where
b dr
I@ab)=_m | TH Oz de

with £€2=r?/(2Dt?w), HereD is the diffusion constant, i.e.,
R?~2Dt?%w, whereR is the root-mean-square displacement
of a single RW, and the geometric facteg is a constant
defined through the relation
V(r)=vor,

3

S

I_ o]
ous analyses. Since we are interested in the behavior GF =n

inside a hypersphere of radiugsee Table)[17,18.
In order to evaluatdy(d;—1;00) for N> 1 it suffices to
know I"y(r) for large ¢&. We will assume that

T(r)=~T(r)=1—A¢ #e

1+ hng“V), (4)
n=1

when &> 1. Although this relation is known to be true for
some Euclidean latticds’] (see Table), it is only a plau-
sible conjecture for some fractal substrafé8]. Next, we
decomposdy(«a;0..°) asdy(a;0,Ex) +In(e; éx ,°), where
&, is a value that should satisfy two condition(®) & is

large enough fol";(£) to be approximated by’ (&) for &

= ¢, and(ii) small enough so tthtN(gx)=1/NK, with «
>1 (sayx=2). When these two conditions are fulfilled one
finds that&,~InN and thatJy(«;0,£«) goes, apart from
logarithmic terms, as N1, Thus we can neglect
JIn(@;0,6%) and approximatey(a;0:0)~Jy(a; €y ,) for
largeN because, as we will provdy(a; &y , ) goes essen-
tially as a positive power of IN. Inserting Eq.(4) into Eq.
(2), one findsy(a; £, ) ~NZ;_ojnKn_1[@— (n=1))],

whereKN(a)=f2°x§“f[\'(§)[1—rt(§)]d§. By means of the

substitutionlN“t(g) =exp(—2), Ky(e) becomes a Laplace inte-
ral,

y

3

Zx d
Kn(a)= Jo e (e 7- D&y

dz (5)

tHowever, it is not possible to use here Watson’s lemma di-

rectly becaus€&“(dé/dz) has a logarithmic singularity at
=0: From the definition ofz and Eq.(4) one gets—cé&”
+InA+uln E'+In(1+32,_h,E ™) =In(1—e?), which
equation, to a first approximation leads e[ (—In 2)/c]”

as long ast>|In A|. Taking approximations of higher order
(this can be done systematically, although to find definite
values of the coefficients becomes increasingly cumbersome
and inserting the result into Eq5) one obtainsKy(«)
_o2h _okiMA (B—n—1), where B=(a+1)/v and
An(k) =féx exp(—=N2)(—In2"In™(—In2dz Asymptotic ex-
pressions ofA ,, for large N have been used ifl5,16 and
studied in[20], and will not be quoted here. Uniting all the
above relations, Eq1) becomegdetails will be given else-
where

\%
Su(t) =~ (2D) AN (I N) U FU (N, (6)
C v
with
o n
FAN,t)=1+ >, In""N Y, s In™InN.
n=1 m=0

)

We have worked out these expressions up to second order
(n=2), obtaining

siP=pBow,

®
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FIG. 1. Dependence oN of the number of distinct sites visited

by N independent random walkerS,(t), by timet=200, for the
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Equation (6) is precise enough to allow us to discover

some of the properties ofSy(t). For example, for
d-dimensional simple cubic lattices withd=2 we
can draw from this equation, i.e., fromSy(t)
~vo[2D(t/d)InN?]¥?F¥2(N,t), some interesting conclu-

sions concerning the geometry of the set of visited sites. Let
R, (N,t;d) be the average maximum distance reached by

any of theN walkers by timet in the d-dimensional lattice. It
is clear that, to order zero in 1/M, R (N,t;1)=Sy(t)/2

~[2DtInN?]*2. As the d-dimensional walk of a RW over
the simple cubic lattice can be seen as(ibrthogonal com-

position of d one-dimensional random walks, then
R, (N,t;d)~R. (N,t/d;1)~[2D(t/d)In N*]? because each
RW travels in each direction onlydth part of the total time

one-, two-, and three-dimensional simple cubic Euclidean lattices;, Byt the main asymptotic term ofSy(t) is just
In our simulations every random walker makes a jump from a Site\/O[R+(N,t;d)]d, i.e., Sy(t) is (to order zero in 1/IiN) ap-
to one of its nearest neighbors placed at one unit distance in ea%‘roximately given by the volume of the hypersphere of ra-
dius R, (N,t;d). Notice that this statement is equivalent to
saying that the exploration performed by tNeRWs is (al-
mosd compact in the sense of de Genh&®,22 (most sites
inside a compact region are visited before a new site outside
this region is reachgdBut we know from two independent
arguments that the above twequivalent statements are
only very roughly correct: first, because the corrective terms
of Eq. (6) are non-negligible and, second, because the set of
visited sites has a ring of dendritic nature, i.e., the set has a
rough surfac¢23]. Therefore, it is natural to assume that the
asymptotic corrective terms (t) account for the number

of visited sites that are inside this dendritic ring. This sug-
gests that we could estimate the thickness of this layer
through the corrective terms as follows: Defining the half-

time unit, so thaD=1/2. Ford=2 andd=3, the symbols corre-
spond to the simulation estimate fidr=2" with n=1, . . .,14. Each

simulation point is an average over“léxperiments. For the one-
dimensional lattice the symbolsircles correspond to the numeri-

cal integration of Eq(1) with T'(r)=erf{r/(4Dt)*?]. The dashed
and solid lines correspond to the approximation of ordém@ain
term) and order 2, respectively, of E¢). The dotted lines corre-

spond to the results of Ref6,7] but with the amplitude corrected

by the factor 24 [21]. This line is absent fod=1 because, in this
case, the(corrected results of Larraldeet al. coincide with our
approximation of order 0.

s{V=—Bu, 9)

2 (1)2

SP=p(B-1) W—+—)+B(Ch1—uw), (10)
12 2

SP=Bu?-B(B-1)po, (11)

~ 1
sP=5B(B-1)u’, (12
wherew=y+InA+ulnc and y=0.577 215 is Euler’s con-
stant. In Fig. 1 we compare E6) with numerical results.

from relatively small values oN, i.e., fromN=2°.

two-dimensional lattice in whichl;=d,,=2 [21]. With re-

Ref. [6] that [ Sy(t)/(sot% /%) ]”/9/In N~F with F=1 for
d=1,F=1—(InInt)/InN for d=2 andF=1—Int/InN for
d=3. However, from Eq(7) and up to first orderq=1),
one easily finds tha&t =1+ (o — « InIn N)/In N, so that from
Table | one sees that the values foft,N) reported in this
Rapid Communication and in Rd6] agree to order zero for
d=1 and onlypartially [because the term In(In N)/In N is
absent in Ref[6]] up to first order ford=2 andd=3. For

In(Int)/In N given by Larraldeet al. [6].

thickness

of

the

layer

as hy(t;d)/2=R. (N, t;d)

—Ro(N,t;d), with Ry(N,t;d)=[Sy(t)/vo]* being an esti-
mate of the average or typical distance that separates the

visited sites of the ring from the center, one easily finds from
Eq. (6) that hy(t;d)/R.(N,t;d)~—InA(t)/InN. Thus, we

have discovered that the size of this dendritic region grows

with respect to the size of the full set as Irtlfor d=2 and
Inyt for d=3. For the crossover time, , hy(t. ;d) and

R, (N,t{ ;d) are comparable; beyond this time, the dendritic
ring outruns the inner compact core and one enters the time
The importance of the corrective terms is evident, as is theegime |II.
good performance of the second-order asymptotic expression We conclude our Rapid Communication by exploring the
relation betweersy(t) and the order statistic quantityy(r)

We must compare Ed6) with the expressions obtained [15,16] defined as the time to first reach a given distanbg
in Refs.[6-8] (see Fig. 1. To start with, the main term given the first RW of a set oN independent RWs all starting from
in Ref.[7] is d¢(d,,—1)/d,, times the main term reported in the same origin. Referen¢&6] discussed how to connect the
this Rapid Communication, and thus they only agree for thewo quantities. However, at that time, it was only possible to
relate the dominant behavior of the two quantities, but not
spect to the corrective terms to the main term, it was found inheir amplitudes or corrective terms because, as noted above,
those of Sy(t) were either incorrect or unknown. Equation
(6) has emended this situation, and it now turns out that it is
possible to make a good estimatet pf; from Sy(t), and vice
versa, by means of the relatioBy[t;n(r)]~ver®. The
meaning of this equation is clear: as the exploration per-

formed by theN RWs is (roughly) compact(as was dis-

cussed aboyethen almost every site of the hypersphere of
radiusr has been visited when the distancis first reached
the two-dimensional lattice this absent first-order term couldoy a RW at timet, n(r); this implies thatSy[t;n(r)] is

be comparable to or even larger than the first-order terngroughly) given byvor%. Then, from this relation and from

Eq. (6), one deduces
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ro ]9 N1 dw Sn(t) explored byN>1 random walkers. Our solution is Eq.
tin(n)~|— —~ Flde(N,tl,N). (13 (6), which is valid for any diffusive problem for which Eq.
V2D (3) and Eq.(4) hold. We have learned that, except for enor-

mously large values df, it is necessary to include corrective

t,n(r) for the one-dimensional aridome fractal substrates, €'™MS 10 the main term oBy(t) as such terms decay very
differing from that obtained rigorously in RefL6] by terms m|IQIy as powers of 1/IiN. F_ord-d|men3|onal simple cubic
of secondorder only. At this point, it seems natural to con- lattices the value of the main term can be understood as the
jecture that Eq(13) could also lead to a good approximation Manifestation of théalmos) compact character of the explo-
tot,(r) for Euclidean substrates with=2. This would be ration performed by th&l walkers. This property was used to
notable indeed because for these media there only exists ti§@njecture the relatiofl3) for the escape time of the first
conjecture that, (r) goes as 1/l [15]. [Equation (13) random walker of a set dfl from a hyperspherical region.
supports this conjecture becaudg=2 for Euclidean sub- We related the fact that the main term is only a rough ap-
strates] Equation(13) should be a better approximation for proximation to the fact that the set of visited sites is not truly
the one-dimensional and fractal substrates than for Euclidearompact as it has a rough surface: a dendritic ring. The num-
lattices withd=2 because the exploration ofsingleRW is  ber of sites of this ring was then related to the corrective
not compact for these latter media. However, as the exploraasymptotic terms, thus allowing us to estimate the thickness
tion is made bymanyparticles, this effect should be weak- of the roughening.
ened. This work was supported by the DirecnidGeneral de

In summary, we have addressed the problem of finding &nvestigacio Cientfica y Tecnica(Spain through Grant No.
full and rigorous solution to the problem of calculating, for PB97-1501 and by the Junta de Extremadura through Grant
the nontrivial time regime, the number of different sitesNo. IPR98CO019.
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