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The problem of evaluating the number of distinct sitesSN(t) covered up to timet by N random walkers is
revisited. For the nontrivial time regime and forN@1 we show how to get the asymptotic behavior ofSN(t)
and we calculate the main and first two corrective terms. Themth corrective term decays mildly as 1/lnm N. For
d-dimensional (d51,2,3) simple cubic lattices, the main term is the volume of the hypersphere of radius
@(ln N2)2Dt/d#1/2, D being the diffusion constant, and the corrective terms account for the roughening of the
surface of the set of visited sites.@S1063-651X~99!50510-2#
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The behavior of a large class of natural and social syst
in science~physics, chemistry, ecology, and economy! can
be cast into the form of a random walk@1–3#. The properties
associated with the wandering of asinglewalker have been
the most studied@2,3#, but the diffusing properties of asetof
random walkers~RWs! are much less known, notwithstand
ing their interest@4#. Our knowledge of so basic a quantity a
the number of distinct sitesSN(t) covered byN RWs up to
time t is a good example. Its properties whenN51 have
been thoroughly studied@1–3# since the problem was firs
suggested@5#. However, its multiparticle counterpart ha
only been tackled since the recent seminal work of Larra
et al. [6,7] in which asymptotic expressions of SN(t) for
large N were found when the set of RWs, initially at th
same point, diffuse with steps of finite variance on Euclide
lattices of one, two, and three dimensions. Shortly therea
this work was extended to fractal substrates by Havlinet al.
[8]. (Subsequent generalizations and refinements have b
appearing since then [9].)

These authors found three distinct time regimes inSN(t):
a very short-time regime or regime I, an intermediate regi
or regime II, and a long-time regime or regime III. The val
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of SN(t) in regimes I and III is not difficult to understand. I
regime I (t!t3) the number of RWs per site is so large th
every site that may be visited is effectively visited, so th
SN(t)'AIt

dl when t!t3; ln N, dl being the chemical di-
mension@10# (dl5d for d-dimensional Euclidean lattices!
and AI a constant that depends on the lattice. In regime
(t@t38 ), the RWs are so far away from each other that th
trails ~almost! never overlap so thatSN(t)'NS1(t). This
never happens for lattices with spectral dimensionds

52df /dw,2, so thatt38 5` (dw is the anomalous diffusion
exponent anddf is the fractal dimension of the substrate!.
Also, one hast38 ;eN for d52 andt38 ;N2 for d53. How-
ever, the calculation ofSN(t) for the intermediate regime
(t3!t!t38 ) is much more involved and little more is know
than thatSN(t)/tdf /dw goes asymptotically ass0(ln x)df /n for
large N, with n[dw /(dw21) andx5N for ds,2, x5N/
ln t for d52 andx5N/At for d53 @6–8,11#. However, no
prefactorss0 were given for the Euclidean lattices in@6# nor
for the fractals lattices in@8#. ~Values of s0 for Euclidean
lattices were given in@7,11#, but, except for the two-
dimensional case, they do not agree with ours.! Moreover, no
corrective term to the main asymptotic term has ever b
computed @12# and no direct comparison~value against
value! has ever been made between numerical results
theoretical values, apart from testing@6,8# whether
R3459 © 1999 The American Physical Society
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SN(t)/tdf /dw is linear in (lnx)df /n @13#. A major objective of
this Rapid Communication is to amend these deficienc
We will see that the solution@cf. Eq. ~6!# to the problem of
calculatingSN(t) given in this Rapid Communication~i! has
a main term that differs from that evaluated by Larraldeet al.
by a factor df(dw21)/dw , and (ii) contains corrective terms
that are not at all negligible when compared with the ma
term even for very large values of Nbecause they decay onl
logarithmically withN. ~This fact should be considered whe
theoretical results are compared with observations, espec
when N is not very large@14#.! We will connect the main
term to the~almost! compact nature of the set of visited site
and the corrective terms to the roughening of its surfa
Finally, our solution is precise enough to disclose the ti
relationship betweenSN(t) and the escape time,t1,N(r ), of
the first RW of a set ofN diffusing particles from a region o
radius r @15,16#. This will lead us to guess an asymptot
expression fort1,N in Euclidean media withd>2.

Our analysis begins, as in Refs.@6–8#, by recognizing that
SN(t)5( r$12G t

N(r )% for N noninteracting RWs, where th
sum is over all the sites in the lattice andG t(r ) is the prob-
ability that siter has not been visited by a single RW by st
t. However, from here on our procedure departs from pre
ous analyses. Since we are interested in the behavio
SN(t) after a large number of steps~thus outside of the very
short time regime I!, we replaceG t(r ) and SN(t) by their
continuum approximation,

SN~ t !5E
0

`

$12G t
N~r !%v0dfr

df21dr

5v0df~2D !df /2tdf /dwJN~df21;0,̀ !, ~1!

where

JN~a;a,b!5
N

a11Ea

b

G t
N21~j!

dG

dj
ja11dj, ~2!

with j2[r 2/(2Dt2/dw). HereD is the diffusion constant, i.e.
R2'2Dt2/dw, whereR is the root-mean-square displaceme
of a single RW, and the geometric factorv0 is a constant
defined through the relation

V~r !5v0r df , ~3!

TABLE I. Parameters appearing in the asymptotic expressio
SN(t), Eq. ~6!. The symboldD refers to thed-dimensional simple
hypercubic lattice andS2 to the two-dimensional Sierpinski lattice

The parameter p̃ is @2t(2Dp)3/3#1/2p(0,1), where p(0,1)
.1.516 386@1,2#. For finitely ramified fractals it can be proved th
A is bounded if it is a function of time@16–18#. The values for the
Sierpinski lattice are only plausible@see remark following Eq.~4!#;
in particular,v0 is only ‘‘almost’’ constant: it is really a function
that oscillates slightly around the value 3.

Case v0 df dw A c m h1

1D 2 1 2 A2/p 1/2 1/2 21
2D p 2 2 1/lnt 1 1 21
3D 4p/3 3 2 1/(p̃At) 3/2 1 21/3

S2 3 ln 3/ln 2 ln 5/ln 2 0.613 0.981 1/220.56
s.

lly

,
e.
t

i-
of

t

whereV(r ) is the volume~number of sites! of the substrate
inside a hypersphere of radiusr ~see Table I! @17,18#.

In order to evaluateJN(df21;0,̀ ) for N@1 it suffices to
know G t(r ) for largej. We will assume that

G t~r !'G̃ t~r !512Aj2mne2cjnS 11 (
n51

`

hnj2nnD , ~4!

when j@1. Although this relation is known to be true fo
some Euclidean lattices@7# ~see Table I!, it is only a plau-
sible conjecture for some fractal substrates@19#. Next, we
decomposeJN(a;0,̀ ) asJN(a;0,j3)1JN(a;j3 ,`), where
j3 is a value that should satisfy two conditions:~i! j3 is

large enough forG t(j) to be approximated byG̃ t(j) for j
>j3 , and~ii ! small enough so thatG t

N(j3)51/Nk, with k
.1 ~sayk52). When these two conditions are fulfilled on
finds thatj3

n ; ln N and thatJN(a;0,j3) goes, apart from
logarithmic terms, as 1/Nk21. Thus we can neglec
JN(a;0,j3) and approximateJN(a;0,̀ )'JN(a;j3 ,`) for
largeN because, as we will prove,JN(a;j3 ,`) goes essen-
tially as a positive power of lnN. Inserting Eq.~4! into Eq.
~2!, one findsJN(a;j3 ,`)'N(n50

` j nKN21@a2(n21)n)],

whereKN(a)5*j3

` jaG̃ t
N(j)@12G̃ t(j)#dj. By means of the

substitutionG̃ t(j)5exp(2z), KN(a) becomes a Laplace inte
gral,

KN~a!5E
0

z3

e2Nz~e2z21!ja
dj

dz
dz. ~5!

However, it is not possible to use here Watson’s lemma
rectly becauseja(dj/dz) has a logarithmic singularity atz
50: From the definition ofz and Eq.~4! one gets2cjn

1 ln A1m ln j2n1ln(11(n51
` hnj

2nn)5ln(12e2z), which
equation, to a first approximation leads toj5@(2 ln z)/c#1/n

as long asjn@u ln Au. Taking approximations of higher orde
~this can be done systematically, although to find defin
values of the coefficients becomes increasingly cumberso!
and inserting the result into Eq.~5! one obtainsKN(a)
'(n50

` (m50
n km

(n)Dm(b2n21), where b[(a11)/n and
Dm(k)5*0

z3 exp(2Nz)(2ln z)klnm(2ln z)dz. Asymptotic ex-
pressions ofDm for large N have been used in@15,16# and
studied in@20#, and will not be quoted here. Uniting all th
above relations, Eq.~1! becomes~details will be given else-
where!

SN~ t !'
v0

cdf /n
~2D !df /2tdf /dw~ ln N!df /nFdf /n~N,t !, ~6!

with

Fb~N,t !511 (
n51

`

ln2n N (
m50

n

s̃ m
(n) lnm ln N. ~7!

We have worked out these expressions up to second o
(n52), obtaining

s̃0
(1)5bv, ~8!

f
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s̃1
(1)52bm, ~9!

s̃ 0
(2)5b~b21!S p2

12
1

v2

2 D1b~ch12mv!, ~10!

s̃ 1
(2)5bm22b~b21!mv, ~11!

s̃ 2
(2)5

1

2
b~b21!m2, ~12!

wherev5g1 ln A1m ln c andg.0.577 215 is Euler’s con-
stant. In Fig. 1 we compare Eq.~6! with numerical results.
The importance of the corrective terms is evident, as is
good performance of the second-order asymptotic expres
from relatively small values ofN, i.e., fromN*25.

We must compare Eq.~6! with the expressions obtaine
in Refs.@6–8# ~see Fig. 1!. To start with, the main term given
in Ref. @7# is df(dw21)/dw times the main term reported i
this Rapid Communication, and thus they only agree for
two-dimensional lattice in whichdf5dw52 @21#. With re-
spect to the corrective terms to the main term, it was foun
Ref. @6# that @SN(t)/(s0tdf /dw)#n/df / ln N'F with F51 for
d51, F512(ln ln t)/ln N for d52 andF512 lnAt/ ln N for
d53. However, from Eq.~7! and up to first order (n51),
one easily finds thatF511(v2m ln ln N)/ln N, so that from
Table I one sees that the values forF(t,N) reported in this
Rapid Communication and in Ref.@6# agree to order zero fo
d51 and onlypartially @because the termm ln(ln N)/ln N is
absent in Ref.@6## up to first order ford52 andd53. For
the two-dimensional lattice this absent first-order term co
be comparable to or even larger than the first-order te
ln(ln t)/ln N given by Larraldeet al. [6].

FIG. 1. Dependence onN of the number of distinct sites visite
by N independent random walkers,SN(t), by time t5200, for the
one-, two-, and three-dimensional simple cubic Euclidean lattic
In our simulations every random walker makes a jump from a
to one of its nearest neighbors placed at one unit distance in
time unit, so thatD51/2. Ford52 andd53, the symbols corre-
spond to the simulation estimate forN52n with n51, . . .,14. Each
simulation point is an average over 104 experiments. For the one
dimensional lattice the symbols~circles! correspond to the numeri
cal integration of Eq.~1! with G t(r )5erf@r /(4Dt)1/2#. The dashed
and solid lines correspond to the approximation of order 0~main
term! and order 2, respectively, of Eq.~6!. The dotted lines corre-
spond to the results of Refs.@6,7# but with the amplitude corrected
by the factor 2/d @21#. This line is absent ford51 because, in this
case, the~corrected! results of Larraldeet al. coincide with our
approximation of order 0.
e
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e
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Equation ~6! is precise enough to allow us to discov
some of the properties ofSN(t). For example, for
d-dimensional simple cubic lattices withd>2 we
can draw from this equation, i.e., fromSN(t)
'v0@2D(t/d)ln N2#d/2Fd/2(N,t), some interesting conclu
sions concerning the geometry of the set of visited sites.
R1(N,t;d) be the average maximum distance reached
any of theN walkers by timet in thed-dimensional lattice. It
is clear that, to order zero in 1/lnN, R1(N,t;1)5SN(t)/2
'@2Dt ln N2#1/2. As the d-dimensional walk of a RW over
the simple cubic lattice can be seen as the~orthogonal! com-
position of d one-dimensional random walks, the
R1(N,t;d)'R1(N,t/d;1)'@2D(t/d)ln N2#1/2 because each
RW travels in each direction only adth part of the total time
t. But the main asymptotic term ofSN(t) is just
v0@R1(N,t;d)#d, i.e., SN(t) is ~to order zero in 1/lnN) ap-
proximately given by the volume of the hypersphere of
dius R1(N,t;d). Notice that this statement is equivalent
saying that the exploration performed by theN RWs is ~al-
most! compact in the sense of de Gennes@10,22# ~most sites
inside a compact region are visited before a new site out
this region is reached!. But we know from two independen
arguments that the above two~equivalent! statements are
only very roughly correct: first, because the corrective ter
of Eq. ~6! are non-negligible and, second, because the se
visited sites has a ring of dendritic nature, i.e., the set ha
rough surface@23#. Therefore, it is natural to assume that t
asymptotic corrective terms toSN(t) account for the numbe
of visited sites that are inside this dendritic ring. This su
gests that we could estimate the thickness of this la
through the corrective terms as follows: Defining the ha
thickness of the layer as hN(t;d)/25R1(N,t;d)
2R0(N,t;d), with R0(N,t;d)5@SN(t)/v0#1/d being an esti-
mate of the average or typical distance that separates
visited sites of the ring from the center, one easily finds fro
Eq. ~6! that hN(t;d)/R1(N,t;d);2 ln A(t)/ln N. Thus, we
have discovered that the size of this dendritic region gro
with respect to the size of the full set as ln lnt for d52 and
lnAt for d53. For the crossover timet38 , hN(t38 ;d) and
R1(N,t38 ;d) are comparable; beyond this time, the dendri
ring outruns the inner compact core and one enters the
regime III.

We conclude our Rapid Communication by exploring t
relation betweenSN(t) and the order statistic quantityt1,N(r )
@15,16# defined as the time to first reach a given distancer by
the first RW of a set ofN independent RWs all starting from
the same origin. Reference@16# discussed how to connect th
two quantities. However, at that time, it was only possible
relate the dominant behavior of the two quantities, but
their amplitudes or corrective terms because, as noted ab
those ofSN(t) were either incorrect or unknown. Equatio
~6! has emended this situation, and it now turns out that i
possible to make a good estimate oft1,N from SN(t), and vice
versa, by means of the relationSN@ t1,N(r )#'v0r df . The
meaning of this equation is clear: as the exploration p
formed by theN RWs is ~roughly! compact~as was dis-
cussed above!, then almost every site of the hypersphere
radiusr has been visited when the distancer is first reached
by a RW at timet1,N(r ); this implies thatSN@ t1,N(r )# is
~roughly! given byv0r df . Then, from this relation and from
Eq. ~6!, one deduces

s.
e
ch
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t1,N~r !'F r

A2D
G dwF ln N

c G12dw

F12dw~N,t1,N!. ~13!

It is remarkable that Eq.~13! is a good approximation to
t1,N(r ) for the one-dimensional and~some! fractal substrates
differing from that obtained rigorously in Ref.@16# by terms
of secondorder only. At this point, it seems natural to co
jecture that Eq.~13! could also lead to a good approximatio
to t1,N(r ) for Euclidean substrates withd>2. This would be
notable indeed because for these media there only exist
conjecture thatt1,N(r ) goes as 1/lnN @15#. @Equation ~13!
supports this conjecture becausedw52 for Euclidean sub-
strates.# Equation~13! should be a better approximation fo
the one-dimensional and fractal substrates than for Euclid
lattices withd>2 because the exploration of asingleRW is
not compact for these latter media. However, as the expl
tion is made bymanyparticles, this effect should be weak
ened.

In summary, we have addressed the problem of findin
full and rigorous solution to the problem of calculating, f
the nontrivial time regime, the number of different sit
ol
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SN(t) explored byN@1 random walkers. Our solution is Eq
~6!, which is valid for any diffusive problem for which Eq
~3! and Eq.~4! hold. We have learned that, except for eno
mously large values ofN, it is necessary to include correctiv
terms to the main term ofSN(t) as such terms decay ver
mildly as powers of 1/lnN. For d-dimensional simple cubic
lattices the value of the main term can be understood as
manifestation of the~almost! compact character of the explo
ration performed by theN walkers. This property was used t
conjecture the relation~13! for the escape time of the firs
random walker of a set ofN from a hyperspherical region
We related the fact that the main term is only a rough
proximation to the fact that the set of visited sites is not tru
compact as it has a rough surface: a dendritic ring. The n
ber of sites of this ring was then related to the correct
asymptotic terms, thus allowing us to estimate the thickn
of the roughening.
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