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A recent hypothesis of D. J. Evans and A. Baranyai according to which the 
Gaussian thermostat maximizes the average phase-space compression factor A 
in nonequilibrium steady states is analyzed for a dilute gas under uniform shear 
flow. Three routes have been followed: (i) an exact solution of the Bhatnagar- 
Gross-Krook kinetic equation for arbitrary shear rate, (ii) an exact solution of 
the Boltzmann equation through super-Burnett order, and (iii) a numerical 
solution of the Boltzmann equation for finite shear rates. The results show that 
the above hypothesis does not exactly hold for arbitrary shear rates, although 
the thermostat that maximizes A is close to the Gaussian one. In addition, the 
influence of the thermostat considered on the nonlinear shear viscosity is also 
analyzed. 

KEY WORDS: Phase-space compression factor; thermostat forces; uniform 
shear flow; Boltzmann equation. 

1. I N T R O D U C T I O N  

In nonequi l ibr ium molecular  dynamics simulations, deterministic thermo- 
stats are usually introduced to remove the heat produced so that non-  
equil ibrium steady states are achieved, tl'-'~ In this context, a thermostat  
adopts the form of an external force ~ acting on each particle. Gauss '  
principle of least constraint  provides the simplest choice for o~, namely 
o ~ = - m ~ o V ,  where V is the peculiar velocity and m is the mass of a 
particle. ~1"2~ In general, the presence of the thermostat  force implies that the 
volume of the phase space accessible to the steady state decreases in time. 
The rate of change of this volume is measured by the phase-space compres- 
sion factor (which is a negative quantity).  Its average A is proport ional  to 
the time derivative of the Gibbs entropy, t3~ 
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Recently, Evans and Baranyai 141 have proposed a variational principle 
to characterize nonequilibrium steady states. This principle states that A is 
a local maximum with respect to variations of endogenous variables. Such 
a hypothesis is a generalization of the principle of minimum entropy 
production tS) to far-from-equilibrium states. In addition, they conjecture 
that within several wide classes of possible thermostats, the Gaussian 
thermostat maximizes the phase-space compression factor. 13~ To support 
their hypotheses, Evans and Baranyai provided simulation data for a 
thermostatted dense fluid under uniform shear flow. Other extremum 
properties of the Gaussian thermostat have also been proposed and tested 
by computer simulations, t6~ 

Although the above hypotheses seem to be supported by numerical 
evidence, it is clear that a theoretical analysis is desirable. This requires a 
study of the properties of the system far from equilibrium. Consequently, it 
is convenient to consider a tractable system for which a detailed description 
can be offered. The prototype fluid for the study of nonequilibrium proper- 
ties is a monatomic low-density gas with short-range interactions. The 
physical information is given by the one-particle velocity distribution func- 
tion, which obeys the nonlinear Boltzmann equation, tT) Starting from e x a c t  

solutions of the Boltzmann equation tS) and of the Bhatnagar-Gross-Krook 
(BGK) model kinetic equation, ~9~ it has been proved that the Evans- 
Baranyai variational principle is no t  verified arbitrarily far from equi- 
librium. 

The aim of this paper is twofold. First, we want to investigate whether 
the Gaussian thermostat maximizes the phase-space compression factor of 
a dilute gas under uniform shear flow. If this were the case, this would 
provide a reason, additional to Gauss' principle, to choose the thermostat 

= - m c t o V  among different possible thermostats. Second, we are inter- 
ested in analyzing the influence of the thermostat considered on the main 
transport property of the system, namely the shear viscosity coefficient. In 
particular, we will study the extent to which the nonl inear  shear viscosity 
is affected by small deviations from the Gaussian thermostat. In order to 
address the above points, we will follow three complementary routes: (i) an 
exact solution of the BGK model kinetic equation for arbitrary shear rates, 
(ii) an exact solution of the nonlinear Boltzmann equation for Maxwell 
molecules up to third order in the shear rate, and (iii) a numerical solution 
of the Boltzmann equation by means of the direct simulation Monte Carlo 
(DSMC) method I~~ for finite shear rates. 

This paper is organized as follows. In Section 2 the problem is posed 
and the class of thermostats considered is defined. The relevant quantities 
of the problem are obtained in terms of quantities evaluated with the 
Gaussian thermostat. The expressions hold for the Boltzmann equation in 
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the case of Maxwell molecules and for the BGK equation for general inter- 
action potentials. The latter case is worked out in Section 3 by making use 
of the known solution of the BGK equation for a Gaussian thermostat and 
arbitrary shear rate. (~]~ The case of the Boltzmann equation is considered 
in Section4, where a Chapman-Enskog solution recently derived (~2~ is 
used. This is complemented with numerical results for finite shear rates. 
Finally, the results are discussed in Section 5. 

2. D E S C R I P T I O N  OF THE P R O B L E M  

As an adequate example of nonequilibrium steady state, let us consider 
the uniform shear flow, namely a state with a constant density and 
temperature and a linear velocity profile of the form u.,. = ay, a being the 
constant shear rate. To achieve a steady state, a thermostat external force 

is introduced. We choose the following class of thermostats 
(~t-thermostats): 

4 =  -mo~(I g,I '~ v ; -  ~,), i=x,y,z (1) 

The thermostat parameter ct is a function of it and a. The constant ~; 
is introduced to preserve momentum conservation. When one particularizes 
to iL = 0, then ~i = 0 and Eq. (1) reduces to the Gaussian thermostat. The 
uniform shear flow state and the/~-thermostats have been considered by 
Evans and co-workers (3"6) to test the extremum properties of the Gaussian 
thermostat by computer simulations. In this paper, we analyze the problem 
by taking the Boltzmann equation as a starting point. Under the above 
conditions, the Boltzmann equation reads (]3) 

V 0 0 
- a  y - ~ x  f -  o~ ~ ( V, [ V~ [~ - ~ , ) f  = J [ f , f ]  (2) 

where J [ f , f ]  is the nonlinear Boltzmann collision operator (7) and f (V)  is 
the one-particle velocity distribution function. Conservation of momentum 
( ( V )  =0)  implies that ~i= ( V; I V;l">, where 

(A(V) )  = ! J" dV A(V)f(V) (3) 

n is the number density. The average phase-space compression factor 
corresponding to p-thermostats is obtained in ref. 3. In the context of a 
dilute gas, it becomes 

A = -~ (~  + 1)(I V,.I" + I V,I" + I V.I '~) (4) 
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According to the hypothesis proposed by Evans and Baranyai, ~3) A is a 
maximum at/1 = 0 for arbitrary shear rates. Consequently, 2 = 0, where 

1 aA 
(51 

Our main goal is to evaluate 2(a) from Eq. (2). To this end, we expand 
f a n d  ~ in powers of p: 

f =fo+Itf, + "-- (6) 

ct =~o +p~l  + ""  (7) 

where the shear rate a is kept fixed. Analogously, 

A =Ao[1 + / t 2 +  ... ] (8) 

Insertion of these expansions into Eq. (2) yields 

-airy f o - % - ~ .  V, fo=J[fo,fo] (9) 

O 0 
-aVy-~xf~ -~-~ [ Vi(%f, + ~ , f o +  ~o log I Vii fo) 

- % <  V, log I V~I >ofo] =J[fo,f,] +J[f,,fo] (10) 

The knowledge o f f  and a up to first order in / t  is sufficient to determine 
2. It is given as 

~x I 1 
2 = 1 + ~-o + ~  (log [ Vx[ + log [Vy +log  [V:[>o (11) 

where ( A ( V ) > k  is evaluated with the distribution fk. The coefficient ~1 is 
determined from the consistency condition 

< V].+ V~+ Z~>, =0  (12) 

Apart from obtaining 2, it is also interesting to analyze the influence of the 
choice of the thermostat on the nonlinear shear viscosity 

PXy 
r/= - - -  (13) 

a 
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where Pij=mn( V i V.i) is the pressure tensor. In particular, we want to 
calculate the quantity 

so that 

_ lOr /  ~, 
0 = ~ - ~  -o (14) 

~/=~/0[ 1 + p O +  ... ] (15) 

Equation (9) describes the uniform shear flow state in the presence of 
a Gaussian thermostat. Its solution is necessary to solve Eq. (10) and to get 
the relevant parameters of the problem. Equation (9) has been studied by 
the moment method up to fourth degree in the special case of Maxwell 
molecules (repulsive potential of the form r -4 ) .  (14"]5) In particular, one has 

2 , [~cosh_](1 + 9a,_) ] (16) (1o = ~ sinh- 

1 1 +6(1o (17)  
( V.~.)o 2 1 +2(1o 

1 1 
= V:)o 2 1 + 2 . o  

(Vy)o  ( 2 (18) 

1 a 
(V , .Vy )o -  2(1+2(1o)2 (19) 

In these equations, we have chosen units such that 2ksT/m = 1, where 
T is the temperature, and ~ = 1, ~ being a convenient effective collision 
frequency. 

It must be noticed that the exact knowledge of a finite number of 
moments offo is not sufficient to get averages such as ( log]V/I)o.  Conse- 
quently, one needs to know the explicit expression of fo. This function 
has been recently derived through super-Burnett order (a3). (12I Another 
possibility is to use the solution of Eq. (9) when J[fo,fo] is replaced by the 
BGK collision term. t~6) This solution has been derived in ref. 11 and 
applies for general interaction potentials and arbitrary shear rates. 

In the remainder of this section we will express the quantities (1~, 2, 
and O in terms of averages with fo. Here, we will assume that the particles 
interact through the Maxwell potential. Multiplying both sides of Eq. (10) 
by V i Vj and integrating over V, one gets 

a(~i.x-( VjVy)I-[- ~jx( Vi gy) 1) -1- 2(1o( ZiVj)l +2(I1( ZiVj)o 
+0%( Vi Vj(log IV, I + log  I Vj[))o = - - (  ViVi)] (20) 
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This equation gives (ViVj>I in terms of a, and ( . . .  >o- Condition (12) 
provides the expression of al: 

~ = ~ C ~ o  3Oco(l+2%)l<v,.gv(loglV., . l+loglgyl)>o 
1 +  a " 

VT' ,. log [ V,. I > o -- ( 1 + 6ao)< V~ log IVy I > o - < V2: log [ V__ I > o] < 

(21) 

where use has been made of Eqs. (16)-(19). The expression of 3. follows 
from Eqs. (11) and (21). Furthermore, the expression of O = < V,. V,,> 1/ 
< Vx V.,,> o is 

0 =%(1 +2~ o) 1 < V~. V,.(log I V.,-I + log [ V,,[)>o 
( . /  �9 . 

, 2~1 (22) --2~o<V~loglVy[>O 1+2~ 0 

The leading behaviors of 2 and O for small shear rates will be exactly 
obtained in Section 4 in the case of the Boltzmann equation for Maxwell 
molecules. Before that, the general shear-rate dependence of these quan- 
tities will be derived in Section 3 from the BGK kinetic model. 

3. RESULTS FROM THE BGK EQUATION 

The B G K  col l is ion term is defined as 116) 

j [  f f ] _. _ ~ ( f _ f L E )  (23) 

where r is an effective collision frequency and fLE is the local equilibrium 
distribution function. In reduced units, it reads 

fLE = mr - 3/2e- v2 (24) 

The influence of the interaction potential is modeled through the tem- 
perature dependence of r In the thermostatted uniform shear flow state, 
is a constant, so that the results are independent of the interaction 
considered when one takes r = 1 as the time unit. The exact solution of 
Eq. (9) with the replacement (23) is given by (H) 

( 0 )  
fo(V)=~z -3/2 d s e x p [ - ( 1 - 3 a o ) s ] e x p  asV,,~-~,, exp(-e2~~ 2) 

(25) 
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Here, ao is also given by Eq. (16). The action of the operator in Eq. (25) 
is 

exp (asV.v~O--~7-) ~t( V x, Vy, V z ) = ~ (  V,.WasVy, Vy, v:) (26) 
\ UVx/ 

From Eq. (25) one can get the velocity moments. In particular, the 
second-degree moments coincide with those of the Boltzmann equation for 
Maxwell molecules, Eqs. (17)-(19). Moments of higher degree are different 
in both equations/~7) 

The explicit knowledge of fo allows us to evaluate analytically the 
averages appearing in the expressions for it, Eq. (11), cq, Eq. (21), and O, 
Eq. (22). Those averages are calculated in Appendix A. Putting together all 
the results, one finally arrives at 

[4A~21 ~(~ ao~(ll(3ao)+r176 
0( 1 = - a o  [ + 6( 1 + 6OCo) + 2- 1 + 6ao 

1 + 12~o ] 
- a o  (1 + 2ao)(1 +6~o) J 

1 (0" "~ i t = l + ~ l + 2 A ( ~  ~(a-) 
0C o 

~176 I 4 q~(~ + qSill(3OCo ) 4oc o 
O =  I+6o% 3 1+2o% 1+2oc o 

- -  @ ( 2 ) ( 3 0 C O )  

1 - 6 ~ o  ] 
-4 o (i 

(27) 

(28) 

(29) 

In these equations, we have introduced the constants 

A ~'') = n-1/2 f ?  dx X n log X e:" (30) 

and the functions 

�9 (") = f ?  ds e-Ss " log( I + xs 2) (31) 

Some properties of A I") and q~") are given in Appendix B. 
It is quite evident that it :~ 0 for arbitrary shear rates. This means that, 

in the context of the BGK equation, the phase-space compression factor is 
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not maximum for the Gaussian thermostat. For small shear rates, one 
has 

0el= --~ AC2)a2+1---~A~2)a4 17+ l12A ~2~ 
a6 + (9(a 8 ) (32) 

27 

31 a4 + (.9(a6) (33) 

1 4 O=--~a +dP(a 6) (34) 

The fact that 2 is of order a 4 in the BGK model means that the Evans- 
Baranyai hypothesis can be considered as a good approximation for small 
shear rates. Similarly, according to Eq. (34), the shear viscosity up to 
super-Burnett order is not affected by slight variations of the thermostat 
with respect to the Gaussian one. 

4. RESULTS FROM THE B O L T Z M A N N  EQUATION 

As said in Section 2, the knowledge o f f0  (or, equivalently, of the 
infinite set of its velocity moments) is required to evaluate the averages 
appearing in the expressions for s t ,  2, and O. Even though Eq. (9) can be, 
in principle, recursively solved by the moment method for Maxwell 
molecules, this method does not seem to be of practical use for evaluating 
averages such as ( log[Vil)o.  As a consequence, we restrict ourselves to 
the domain of small shear rates, for which a Chapman-Enskog expansion 
is adequate/v" ~6~ In order to obtain the leading behaviors of 2 and O, it is 
necessary to know fo through order a 3. Such an expansion has been 
performed in ref. 12. From it, one can easily get 

/467  16"~ 2 
(log IV, . I)o=ZA'~ 1 - - ~ - 6 + ~ ) a  + (.0(a 4) 

( /_ 1003 + 16 
( l ~ 1 7 6 1 7 6  1470 "~J a2 +(-9(a4) 

[ 493 4 "~ a2 
<log I V_l >o = 2A'~ ~,1~--6 + ~ ,  j -4- (.0(a 4) 

, /1493 8A r 8 ) a2 (V?"I~176 3 3 ~  + ('0(a4) 

( 2 3  4A 12' ~)a2+(_9(a4) 
( V~ log I V;, I>o = 2A~21 + 29--40 3 3 

" ( ~  4A'2' 3~?)a'- ( V-log IV__I)o=2Ar + 3 4- +O(a 4) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 
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1 
- < V.,~ Vy log I Vyl>o a 

1 
= _2A(2) + 

1584660?2?'(49 + 24?)( - 4 9  + 69?) 

x { - 3416526960?' + ( - 5534208960 + 1064012754?') ? 

+ [ 12000198000 + (5342978669 - 10146049760A(2)? ' ] ?2 

+ [ - 3919584480 + (942088581 + 9317800800A (2)) 7, ] ?3 

+ [ - 3500658000 + ( - 937477224 + 6997858560At2)) ?, ] ?4 
+ 954253440? 5 } a 2 + (..0(a 4) 

I <g,.myloglV.,.l>o=l<v,.g,,loglgvl>o 4 + 2 ? - ?  2 a " a . . . .  2? 2 aZ + dg(a4) 

(41) 

(42) 

where --- 1.8731 and ?' "-~ 2.4532 are ratios of eigenvalues of the linearized 
collision operator.  Insertion of the expansions (35)-(42) into E q s . ( l l ) ,  
(21), and (22) yields 

~ ] 3 a4 + ~p(a6) (43) 

2 -- 7? --......~8 a2 + (9(a4) (44) 
157 

0 = C a  4 + O(a 6) (45) 

where C is a coefficient that can be expressed in ters of 7 and 7' and whose 
numerical value is C-~ 0.05588. Equation (44) shows again that 2 4=0 far 
a 4: 0. In addition, ;t is of  order a ~-, in contrast to what happens in the BGK 
model, Eq.(33).  This qualitative discrepancy is related to symmetry 
properties of the B G K  model, which are not present in the Boltzmann 
equation. For  instance, ( log IVy I ) o = ( log  I V~ I ) o and ( Vy log ] V,, I ) o = 
( V 2 log I V~I ) 0 in the B G K  equation, while these equivalences do not hold 
in the Boltzmaan equation, even at the Burnett  order. Similar conclusions 
with respect to the Evans-Baranyai  variational principle c4) have been 
recently found in comparing the predictions of the Boltzmann and BGK 
equations. (s) 

In order to study the behavior of 2 and O for finite shear rates, we 
have numerically solved Eq. (9) by means of the direct simulation Monte  

822/81/5-6-9 
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Carlo (DSMC) method. ('~ We have considered the shear rates a=0 .1 ,  
0.2 ..... 1.0, and have evaluated the averages needed for the calculations of 
the relevant quantities. Figure 1 shows the shear-rate dependence of ).. The 
solid line represents the BGK results, Eqs. (28) and (29), while the dots are 
the simulation results. It is interesting to point out that both the BGK and 
the Boltzmann equations predict that the magnitude of )l increases as the 
shear rate increases. On the other hand, the BGK equation underestimates 
the absolute value of).. As a matter of fact, for small shear rates, ~ ~ a 4 in 
the BGK model, while ~. ~ a 2 in the Boltzmann equation. The fact that 2 
is negative means, according to Eq. (8), that the phase-space compression 
factor A increases (i.e., its absolute value decreases) as p increases around 
It--0. Anyway, the numerical value of 2 in the region considered in Fig. 1 
is sufficiently small to speculate that the value of/x that maximizes A is 
relatively close to p = 0. 

In Fig. 2 we plot O versus a 2. Now the discrepancy between the BGK 
and the Boltzmann values is less remarkable than in the case of ,t. Besides, 
the BGK equation overestimates the influence of the choice of a non- 
Gaussian thermostat. In any case, this influence is not quite important. 
Equation (15) allows one to estimate that, for instance, the shear viscosity 
at a = 1 (for which the shear viscosity is about one-half the Navier-Stokes 
value) and p = 0 . 1  has increased about 0.4% with respect to the value 
corresponding to the Gaussian thermostat. 

0.14 
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0.10 

6.08 / 

0.06 I"/ 
j / /  

0.04 

0.02 

0.00 I , I ~ I , 
0.0 0.2 0.4 0.6 0.8 1.0 

0. 2 

Fig. 1. Shear-rate dependence of ). The solid line refers to the BGK results, while the dots 
represent the simulation results for the Boltzmann equation. The dashed line is the exact 
leading behavior for small shear rates. 
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Fig. 2. The  same  as in Fig. 1, bu t  for O. 

5. CONCLUSIONS 

Nonconservative thermostat forces are commonly used in non- 
equilibrium molecular dynamics to simulate steady states far from equi- 
librium. A consequence of the presence of thermostats is that the 
phase-space volume accessible to the steady state decreases in time. In prin- 
ciple, for a given state, the transport properties, as well as the phase-space 
compression factor, can be affected by the choice of the thermostat force. 
Gauss' principle of least constraint gives a mechanical criterion to select the 
force: o~ = -mc%V. Furthermore, it has been recently conjectured that the 
Gaussian thermostat presents some extremum properties. ~3"6) In particular, 
it maximizes the average phase-space compression factor A. No theoretical 
proof of this hypothesis exists, although it is supported by computer 
simulations of dense fluids under uniform shear flow. 

In this paper, we have tested the validity of the above hypothesis and 
measured the influence of non-Gaussian thermostats on the transport 
coefficient, namely the nonlinear shear viscosity r/, in a dilute gas under 
uniform shear flow. As in ref. 6, we have considered the family of the so- 
called/l-thermostats, i.e., o~=-mo~(lVil  ~ V ~ - ~ ) .  We have addressed our 
attention to the coefficients 2 and O, which are related to the first 
derivatives of A and r/, respectively, with respect to / t  a t / t  = 0. By starting 
from the Boltzmann equation for Maxwell molecules, we have expressed 2 
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and O in terms of quantities defined with the Gaussian thermostat and for 
arbitrary shear rate a. These expressions also hold for the BGK kinetic 
model and general interaction potentials. 

From the explicit solution of the BGK equation in the case of the 
Gaussian thermostat, we have obtained the shear rate dependence of 2 and 
O. A similar calculation cannot be made in the case of the Boltzmann 
equation, since its exact solution is not known for arbitrary a. On the other 
hand, we have taken advantage of the knowledge of the distribution func- 
tion through third order in a to evaluate the leading behavior of 2 and O. 
This information is complemented by numerically solving the Boltzmann 
equation at finite shear rates by means of the DSMC methodJ ~~ The 
results show that 2 ~ 0, so that A is not a maximum at r = 0, from a strict 
point of view. Besides, the magnitude of ;t increases with the shear rate. 
Nevertheless, the fact that 2 is small, even for shear rate as large as a = 1, 
suggests that the value of p that maximizes A is close to p =0 .  For 
instance, if p = 0.1 and a = 1, the magnitude of the phase-space compres- 
sion factor decreases only by about 1%. This could explain why the 
molecular dynamics results t3~ showed that A is maximum at p = 0, since 
the closest values to p = 0 considered were p = _+ 0.25. In addition, it must 
be noticed that the simulations were carried out for a two-dimensional 
dense fluid and the numerical value of 2 is expected to depend on the 
density and dimensionality of the system. 

Concerning the coetticient O, which is related to the dependence of r/ 
on p, the results show that it increases with the shear rate. Nevertheless, a 
small deviation from the Gaussian thermostat has a less noticeable effect 
on the shear viscosity than on the phase-space compression factor. Conse- 
quently, the value of p that maximizes ~/is possibly closer to/1 = 0 than the 
one that maximizes A. This conclusion is similar to the one obtained in 
ref. 8 in connection with the Evans-Baranyai variational principle, t4) 

We think that if the introduction of an artificial thermostat force is 
needed to "manufacture" a certain nonequilibrium steady state, the only 
criterion to choose the thermostat is that of simplicity. From that point of 
view, the Gaussian thermostat is the most appropriate one. Other criteria, 
such as extremizing some physical quantities, lead in general to different 
choices, which are also dependent on how far the state is from equilibrium. 

It must also be pointed out that one can define a nonlinear shear 
viscosity in the USF state without any thermostat, t~8) In general, such a 
viscosity differs from that of thermostatted systems, ~9~ except for a dilute 
gas of Maxwell molecules. For instance, the super-Burnett coefficients for 
a gas of hard spheres differ by about 33%. 1~3> 

Finally, it is important to remark that, in contrast to the conclusions 
of some authors, t2~ the uniform shear flow state (which is generated in the 
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computer by means of the so-called Sllod algorithm (~) or by imposing 
Lees-Edwards boundary conditions 12~) leads to a nonlinear shear viscosity 
different from the one obtained by means of realistic boundary condi- 
tions. (-'2~ This point has been recently clarified in ref. 23. 

APPENDIX  A. CALCULATION OF S O M E  VELOCITY 
INTEGRALS FROM THE BGK SOLUTION 

In this appendix we evaluate the averages appearing in Eqs. (11), (21), 
and (22) by using the solution (25) of the BGK equation. In the following, 
we will make use of the general property 

f dV G(V) e~ = f dV F(V) e .... vyo/a~<,.G(V) (A1) 

Let us first evaluate (log I V:, I ) o: 

( log I V~,l > o = ~  -3p- ds {exp[ - (1  - 3-o)S]} 

x f dV log [Vy l exp(--e2~~ 2) 

Io e-S f d~ [ l~  l~"l - % s ]  e-r 

= 2A ~o) _ % (A2) 

where in the second step we have made the change ~=e '~  and in 
the last step we have used the definition (30). By following similar steps, 
one finds 

V:l)o = (log [Vy[)o (m3) ( log 

( V~ og 

( IT,. V:, log 

V,,])o = ( V~log I V_-I >o 

1 [2A(2) 1 ~176 ] 
1 + 2~ o 2 1 +-2% (A4) 

a [2A 121- % ] (A5) 
V:'l)~ = --(1 +2%)  z [ 1 +20% 
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where 

-as Oo) 
I 1 (A8) 

M - (I "-l-(12S2) 1/2 0 (1 +a282) 1/2 

In the last step of Eq. (A6) we have taken into account the definition (31). 
Similarly, one gets 

< vx v>, log I Vxl >o 

a [ 2A~2 ) 
(1 + ~ o )  2 

(V] .  log I v.,.I >o 

1 1 1 + 2Co + 4  ~( ' ) (3%) (A9) 

_ 1 52A(2)(1 +6Co) 1 So(1 + 18Cto) 
1 + 2Co ~ 2 1 + 2~o 

i } 
+ ~ [ @(~ + 3Cto~2)(3Cto)] (AlO) 

In Eq. (A.10) we used the relation 

3Cto( 1 + 2~o)-" = a-' (Al l )  

whose real solution is Eq. (16). 

1002 

Next, we evaluate (log I Vx I ) o: 

f? (log Ig,.l>o=~ -3/-" ds {exp[- (1  -3~o)S]} 

x ~ dV log I gx -asgy l  exp( ~ e 2 ~ g 2  ~ 

= ~-3/2 I :  ds e -~" I d{  [log I~x I + �89 + a2s 2) - CoS] e -e' 

= 2A (~ - ct o + �89176 (A6) 

Now, in the second step we have made the change 

= e ~~ M.  V (A7) 
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APPENDIX B. SOME PROPERTIES OFA (")AND ~(') 

In order to evaluate the constants A ~') defined in Eq. (30), we start 
from the identity 

~o �9 1 

Differentiation with respect to v yields 

dx x" log x e - ' "=  ~ F g* (B1) 

where gt(x) is the digamma functionJ 24) If we specialize to v = 17 = even, we 
have 

,,,_,,,,[ ( l)] 
AI"I= 2,,/2., - - -yE- -21og2+2  1 + ~ + . . -  + n - - I  (B3) 

where YE = 0.57721... is Euler's constant. 
Now, we are going to obtain a representation of the functions ~"J(x) 

defined in Eq. (31). First, integration by parts yields 

~l"~(x)= dse-"  ns" - '  log(1 + x s 2 ) + 2 x ~ ]  (B4) 

From this equation it is easy to prove the following recurrence relation: 

cI)~,,+l~(x ) = 2x-I,,-,I/2 d [x~,,+,l/2~l,,~(x) ] (B5) 
dx 

Now, we focus on qs~~ It can be expressed as ~2sl 

~~ = -2 [c i (x  -1/2) cos(x -'/2) + si(x -1/2) sin(x- 1/'-) ] (B6) 

where si(z) and ci(z) are the sine and cosine integrals, respectively. From 
Eq. (B5) one finds 

~sIll(x) = ~~ + 2 

2 
+ - -  [ - c i ( x  -1/'-) sin(x -'/2) +si(x  -l/-') cos(x-l/'-)] (B7) 

q~l-'~ = 2q~{1 ~(x) + 2 - 1 45~O)(x) (B8) 
x 
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Finally, from Eq. (31) one gets the asymptotic series in powers of.c: 

qsl"~(x) = ~ ( - 1 )  ' ' ( n + 2 + 2 m ) ! . x  " ' + 1  (B9) 
,,=0 m +  1 
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